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In Memory

David P. DeWitt
March 2, 1934-May 17, 2005

The year 2005 was marked by the loss of Dr. David P. DeWitt, a dear friend and col-
league who contributed significantly to heat transfer technology and pedagogy
throughout a distinguished 45-year career. Dave was educated as a mechanical engi-
neer, receiving a BS degree from Duke University, an MS from MIT, and the PhD
degree from Purdue University. His graduate studies at Purdue nucleated a strong
interest in the fields of thermal physics and radiometry, in which he worked until
illness made it impossible to continue. Dave was instrumental in developing radio-
metric measurement standards at Purdue's Thermophysical Properties Research
Center, eventually becoming its deputy director and president of Technometrics Inc.,
an optical and therma instrument design company. In 1973 he joined Purdue's
School of Mechanical Engineering at the rank of professor, where he taught and con-
ducted research until his retirement in 2000. From 2000 to 2004, he worked in the
Optical Technology Division of the Nationa Institute of Technology and Standards.

Dave was an excellent and demanding teacher, a good researcher and a superb
engineer. In our nearly thirty-year collaboration, he provided complementary skills
that contributed significantly to the success of the books we have co-authored.
However, it is much more on a personal than a professional level that | have my
fondest memories of this very special colleague.

As co-authors, Dave and | spent thousands of hours working together on all
facets of our books, typicaly in blocks of three to five hours. This time often in-
volved spontaneous diversions from the task at hand, typically marked by humor or
reflections on our personal lives.

Dave and | each have three daughters of comparable ages, and we would often
share stories on the joys and challenges of nurturing them. It's hard to think about
Dave without reflecting on the love and pride he had for his daughters (Karen, Amy,
and Debbie). In 1990 Dave lost his first wife Jody due to cancer, and | witnessed
first hand his persona character and strength as he supported her in battling this
terrible disease. | also experienced the joy he felt in the relationship he developed
with his second wife Phyllis, whom he married in 1997.

I will always remember Dave as a sensitive and kind person of good humor and
generosity. Dear friend, we miss you greatly, but we are comforted by the knowl-
edge that you are now free of pain and in a better place.

Frank P. Incropera
Notre Dame, Indiana






Forward to Preface

Not too long after finishing the previous editions of Fundamentals of Heat and
Mass Transfer and Introduction to Heat Transfer, Dave DeWitt and | felt the need
to plan for that time when we would no longer be able to add appropriate value to
future editions. There were two matters of special concern. First, we were advanc-
ing in years, and the potential for disruption due to declining health or our own mor-
tality could not be ignored. But, perhaps more pertinent to maintaining freshness
and vitality to the text books, we also recognized that we were becoming ever more
distant from leading-edge activities in the field.

In 2002, we concluded that we should proactively establish a succession plan
involving the participation of additional co-authors. In establishing desired attrib-
utes of potential candidates, we placed high priority on the following: a record of
success in teaching heat and mass transfer, active involvement with research in the
field, a history of service to the heat transfer community, and the ability to sustain
an effective collaborative relationship. A large weighting factor was attached to this
last attribute, since it was believed to have contributed significantly to whatever
success Dave DeWitt and | have enjoyed with the previous editions.

After reflecting long and hard on the many excellent options, Dave and | in-
vited Ted Bergman and Adrienne Lavine, professors of Mechanical Engineering at
the University of Connecticut and the University of California, Los Angeles, re-
spectively, to join us as co-authors. We were grateful for their acceptance. Ted and
Adrienne are listed as third and fourth authors for this edition, will move to first and
second authors on the next edition, and will thereafter appear as sole authors.

Ted and Adrienne have worked extremely hard on the current edition, and you
will see numerous enhancements from their efforts, particularly in modern applica-
tions related to subjects such as nano and biotechnology. It is therefore most appro-
priate for Ted and Adrienne to share their thoughts in the following preface.

Frank P. Incropera
Notre Dame, Indiana






Preface

Since the last edition, fundamental changes have occurred, both nationally and
globally, in how engineering is practiced, with questions raised about the future of
the profession. How will the practice of engineering evolve over the next decade?
Will tomorrow’s engineer be more valued if he is a specialist, or more handsomely
rewarded if she has knowledge of greater breadth but less depth? How will engi-
neering educators respond to changing market forces? Will the traditional bound-
aries that separate the engineering disciplines in the typical college or university
remain in place?

We believe that, because technology provides the foundation for improving the
standard of living of all humankind, the future of engineering is bright. But, in light
of the tension between external demand for generalization and intellectual satisfac-
tion of specialization, how will the discipline of heat transfer remain relevant? What
will the value of this discipline be in the future? To what new problems will the
knowledge of heat transfer be applied?

In preparing this edition, we attempted to identify emerging issues in technol-
ogy and science in which heat transfer is central to the realization of new products
in areas such as information technology, biotechnology and pharmacology, alterna-
tive energy, and nanotechnology. These new applications, along with traditional ap-
plications in energy generation, energy utilization, and manufacturing, suggest that
the discipline of heat transfer is healthy. Furthermore, when applied to problems
that transcend traditional boundaries, heat transfer will be a vital and enabling disci-
pline of the future.

We have strived to remain true to the fundamental pedagogical approach of
previous editions by retaining a rigorous and systematic methodology for problem
solving, by including examples and problems that reveal the richness and beauty of
the discipline, and by providing students with opportunities to meet the learning
objectives.
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Approach and Organization

From our perspective, the four learning objectives desired in any first course in heat
transfer, detailed in the previous edition, remain as follows:

1. The student should internalize the meaning of the terminology and physical prin-
ciples associated with the subject.

2. The student should be able to delineate pertinent transport phenomena for any
process or system involving heat transfer.

3. The student should be able to use requisite inputs for computing heat transfer
rates and/or material temperatures.

4. The student should be able to develop representative models of real processes
and systems and draw conclusions concerning process/system design or perfor-
mance from attendant analysis.

As in the previous edition, learning objectives for each chapter are clarified to
enhance the means by which they are achieved, as well as means by which achieve-
ment may be assessed. The summary of each chapter highlights key terminology
and concepts developed in the chapter, and poses questions to test and enhance stu-
dent comprehension.

For problems involving complex models and/or exploratory, what-if, and para-
meter sensitivity considerations, it is recommended that they be addressed by using a
computational equation-solving package. To this end, the Interactive Heat Transfer
(IHT) package developed by Intellipro, Inc. (New Brunswick, New Jersey) and
available in the previous edition has been updated. The seasoned user will find the
technical content of IHT to be largely unchanged, but the computational capability
and features have been improved significantly. Specifically, IHT is now capable of
solving 300 or more simultaneous equations. The user interface has been updated to
include a full-function workspace editor with complete control over formatting of
text, copy and paste functionality, an equation editor, a new graphing subsystem, and
enhanced syntax checking. In addition, the software now has the capability to export
IHT-specific functions (e.g. properties and correlations) as Microsoft Excel add-ins.
A second software package, Finite Element Heat Transfer (FEHT), developed by
F-Chart Software of Middleton, Wisconsin, provides enhanced capabilities for solv-
ing two-dimensional conduction heat transfer problems.

As in the previous edition, many homework problems that involve a computer-
based solution appear as extensions to problems that can be solved by hand calcula-
tion. This approach is time tested and allows students to validate their computer
predictions by checking the predictions with their hand solutions. They may then
proceed with parametric studies that explore related design and operating conditions.
Such problems are identified by enclosing the exploratory part in a red rectangle, as,
for example |(b)|, , or . This feature also allows instructors who wish to limit
their assignments of computer-based problems to benefit from the richness of these
problems. Solutions to problems for which the number itself is highlighted, as, for
example, , should be entirely computer based.

We are aware that some instructors who use the text have not utilized IHT in
their courses. We encourage our colleagues to dedicate, at a minimum, one-half hour
of lecture or recitation time to demonstrate IHT as a tool for solving simultaneous
equations, and for evaluating the thermophysical properties of various materials. We



Preface ix

have found that, once students have seen its power and ease of use, they will eagerly
utilize IHT’s additional features on their own. This will enable them to solve prob-
lems faster, with fewer numerical errors, thereby freeing them to concentrate on the
more substantive aspects of the problems.

What’s New in the 6th Edition

Problem Sets This edition contains a significant number of new, revised, and
renumbered end-of-chapter problems. Many of the new problems require relatively
straightforward analyses, and many involve applications in nontraditional areas of
science and technology. The solutions manual has undergone extensive revision.

Streamlined Preseniation The text has been streamlined by moving a small
amount of material to stand-alone supplemental sections that can be accessed elec-
tronically from the companion website. The supplemental sections are called out
with marginal notes throughout the text. If instructors prefer to use material from
the supplemental sections, it is readily available from the Wiley website (see
below). Homework problem statements associated with the supplemental sections
are also available electronically.

Chapter-by-Chapter Content Changes To help motivate the reader, Chap-
ter 1 includes an expanded discussion of the relevance of heat transfer. The rich-
ness and pertinence of the topic are conveyed by discussion of energy conversion
devices including fuel cells, applications in information technology and biological
as well as biomedical engineering. The presentation of the conservation of energy
requirement has been revised.

New material on micro- and nanoscale conduction has been included in Chap-
ter 2. Because in-depth treatment of these effects would overwhelm most students,
they are introduced and illustrated by describing the motion of energy carriers in-
cluding phonons and electrons. Approximate expressions for the effective thermal
conductivity of thin films are presented and are explained in terms of energy carrier
behavior at physical boundaries. The thermal conductivity of nanostructured versus
conventional materials is presented and used to demonstrate practical applications
of recent nanotechnology research. Microscale-related limitations of the heat diffu-
sion equation are explained. The bioheat equation is introduced in Chapter 3, and
its similarity to the heat equation for extended surfaces is pointed out in order to fa-
cilitate its use and solution.

The Chapter 4 discussion of conduction shape factors, applied to multidimen-
sional steady-state conduction, is embellished with recent results involving the di-
mensionless conduction heat rate. Although we have moved the graphical method to
the supplemental material, discussion of two-dimensional isotherm and heat flow line
distributions has been enhanced in order to assist students to conceptualize the con-
duction process. Use of the dimensionless conduction heat rate is extended to tran-
sient situations in Chapter 5. A new, unified approach to transient heat transfer is
presented; easy-to-use approximate solutions associated with a range of geometries
and time scales have been added. Recently, we have noted that few students use the
graphical representations of the one-dimensional, transient conduction solutions
(Heisler charts); most prefer to solve the approximate or exact analytical expressions.
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Hence, we have relegated the graphical representations to the supplemental material.
Because of the ease and frequency with which computational methods are used by
students today, analytical solutions involving multidimensional effects have also
been moved to the supplemental material. We have added a brief section on periodic
heating and have demonstrated its relevance by presenting a modern method used to
measure the thermophysical properties of nanostructured materials.

Introduction to the fundamentals of convection, included in Chapter 6, has been
simplified and streamlined. The description of turbulence and transition to turbu-
lence has been updated. Proper accounting of the temperature-dependence of ther-
mophysical properties is emphasized. Derivation of the convection transfer
equations is now relegated to the supplemental material.

The treatment of external flow in Chapter 7 is largely unchanged. Chapter 8 cor-
relations for the entrance regions of internal flow have been updated, while the dis-
cussion of heat transfer enhancement has been expanded by adding correlations for
flow in curved tubes. Microsale-related limitations of the convective correlations for
internal flow are presented. Chapter 9 correlations for the effective thermal conduc-
tivity associated with free convection in enclosures have been revised in order to
more directly relate these correlations to the conduction results of Chapter 3.

Presentation of boiling heat transfer in Chapter 10 has been modified to im-
prove student understanding of the boiling curve by relating aspects of boiling phe-
nomena to forced convection and free convection concepts from previous chapters.
Values of the constants used in the boiling correlations have been modified to re-
flect the current literature. Reference to refrigerants that are no longer used has been
eliminated, and replacement refrigerant properties have been added. Heat transfer
correlations for internal two-phase flow are presented. Microscale-related limita-
tions of the correlations for internal two-phase flow are discussed. A much-simpli-
fied method for solution of condensation problems is presented.

The use of the log mean temperature difference (LMTD) method is retained for de-
veloping correlations for concentric tube heat exchangers in Chapter 11, but, because of
the flexibility of the effectiveness-NTU method, the LMTD-based analysis of heat ex-
changers of other types has been relegated to the supplemental material. Again, the sup-
plemental sections can be accessed at the companion website. Treatment of radiation
heat transfer in Chapter 12 and 13 has undergone modest revision and streamlining.

The coverage of mass transfer, Chapter 14, has been revised extensively. The
chapter has been reorganized so that instructors can either cover the entire content
or seamlessly restrict attention to mass transfer in stationary media. The latter
approach is recommended if time is limited, and/or if interest is limited to mass
transfer in liquids or solids. The new example problems of Chapter 14 reflect con-
temporary applications. Discussion of the various boundary conditions used in mass
transfer has been clarified and simplified.

We are immensely indebted to Frank Incropera and Dave DeWitt who entrusted us
to join them as co-authors. We are especially thankful to Frank for his patience,
thoughtful advice, detailed critique of our work, and kind encouragement as this
edition was being developed.
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Appreciation is extended to our colleagues at the University of Connecticut and
UCLA who provided valuable input. Eric W. Lemmon of the National Institute of
Standards and Technology is acknowledged for his generosity in providing proper-
ties of new refrigerants.

We are forever grateful to our wonderful spouses and children, Tricia, Nate,
Tico, Greg, Elias, and Jacob for their love, support, and endless patience. Finally,
we both extend our appreciation to Tricia Bergman who, despite all her responsibil-
ities, somehow found the time to expertly and patiently process the solutions for the
new end-of-chapter problems.

Theodore L. Bergman (tberg@engr.uconn.edu)
Storrs, Connecticut

Adrienne S. Lavine (lavine@seas.ucla.edu)
Los Angeles, California

Supplemental and Website Material

The companion website for the text is www.wiley.com/college/incropera. By click-
ing on the ‘student companion site’ link, students may access the answers to the
homework problems and the Supplemental Sections of the text.

Material available for instructors only includes the instructor Solutions Man-
ual, Powerpoint slides that can be used by instructors for lectures, and electronic
versions of figures from the texts for those wishing to prepare their own materials
for electronic classroom presentation. The instructor Solutions Manual is for use by
instructors who are requiring use of the text for their course. Copying or distribut-
ing all or part of the Solutions Manual in any form without the Publisher’s permis-
sion is a violation of copyright law.

Interactive Heat Transfer v3.0/FEHT with User’s Guide is available either
with the text or as a separate purchase. This software tool provides modeling and
computational features useful in solving many problems in the text, and enables
what-if and exploratory analysis of many types of heat transfer problems. The
CD/booklet package is available as a stand-alone purchase from the Wiley website,
www.wiley.com, or through your local bookstore. Faculty interested in using this
tool in their course may order the software shrinkwrapped to the text at a significant
discount. Contact your local Wiley representative for details.
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1.1
What and How?

Chapter 1 m Introduction

From the study of thermodynamics, you have learned that energy can be trans-
ferred by interactions of a system with its surroundings. These interactions are
called work and heat. However, thermodynamics deals with the end states of the
process during which an interaction occurs and provides no information concerning
the nature of the interaction or the time rate at which it occurs. The objective of this
text is to extend thermodynamic analysis through study of the modes of heat trans-
fer and through development of relations to calculate heat transfer rates.

In this chapter we lay the foundation for much of the material treated in the
text. We do so by raising several questions. What is heat transfer? How is heat
transferred? Why is it important? One objective is to develop an appreciation for
the fundamental concepts and principles that underlie heat transfer processes. A
second objective is to illustrate the manner in which a knowledge of heat transfer
may be used with the first law of thermodynamics (conservation of energy) to solve
problems relevant to technology and society.

A simple, yet general, definition provides sufficient response to the question: What
is heat transfer?

Heat transfer (or heat) is thermal energy in transit due to a spatial temperature difference.

Whenever there exists a temperature difference in a medium or between media, heat
transfer must occur.

As shown in Figure 1.1, we refer to different types of heat transfer processes
as modes. When a temperature gradient exists in a stationary medium, which may
be a solid or a fluid, we use the term conduction to refer to the heat transfer that
will occur across the medium. In contrast, the term convection refers to heat trans-
fer that will occur between a surface and a moving fluid when they are at different

Conduction through a solid Convection from a surface Net radiation heat exchange
or a stationary fluid to a moving fluid between two surfaces
T, >T T.>T,
T, 1 2 T, s Surface, T,

Moving fluid, T_,

> } g \\(‘ Surface, T,
a1 /\ \T/

q" —_—>

a
= |

Ficure 1.1 Conduction, convection, and radiation heat transfer modes.
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temperatures. The third mode of heat transfer is termed thermal radiation. All sur-
faces of finite temperature emit energy in the form of electromagnetic waves. Hence,
in the absence of an intervening medium, there is net heat transfer by radiation
between two surfaces at different temperatures.

1.2
Physical Origins and Rate Equations

As engineers it is important that we understand the physical mechanisms which un-
derlie the heat transfer modes and that we be able to use the rate equations that
quantify the amount of energy being transferred per unit time.

1.2.1 Conduction

At mention of the word conduction, we should immediately conjure up concepts of
atomic and molecular activity, for it is processes at these levels that sustain this
mode of heat transfer. Conduction may be viewed as the transfer of energy from the
more energetic to the less energetic particles of a substance due to interactions be-
tween the particles.

The physical mechanism of conduction is most easily explained by considering
a gas and using ideas familiar from your thermodynamics background. Consider a
gas in which there exists a temperature gradient and assume that there is no bulk, or
macroscopic, motion. The gas may occupy the space between two surfaces that are
maintained at different temperatures, as shown in Figure 1.2. We associate the tem-
perature at any point with the energy of gas molecules in proximity to the point. This
energy is related to the random translational motion, as well as to the internal rota-
tional and vibrational motions, of the molecules.

T T,>T,

T,

FIGURE 1.2 Association of conduction heat transfer with diffusion of energy due to
molecular activity.
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FiGure 1.3
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transfer by conduction
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Higher temperatures are associated with higher molecular energies, and when
neighboring molecules collide, as they are constantly doing, a transfer of energy
from the more energetic to the less energetic molecules must occur. In the presence
of a temperature gradient, energy transfer by conduction must then occur in the
direction of decreasing temperature. This would even be true in the absence of
collisions, as is evident from Figure 1.2. The hypothetical plane at x, is constantly
being crossed by molecules from above and below due to their random motion.
However, molecules from above are associated with a larger temperature than
those from below, in which case there must be a net transfer of energy in the posi-
tive x direction. Collisions between molecules enhance this energy transfer. We
may speak of the net transfer of energy by random molecular motion as a diffusion
of energy.

The situation is much the same in liquids, although the molecules are more
closely spaced and the molecular interactions are stronger and more frequent. Simi-
larly, in a solid, conduction may be attributed to atomic activity in the form of lat-
tice vibrations. The modern view is to ascribe the energy transfer to lattice waves
induced by atomic motion. In an electrical nonconductor, the energy transfer is ex-
clusively via these lattice waves; in a conductor it is also due to the translational
motion of the free electrons. We treat the important properties associated with con-
duction phenomena in Chapter 2 and in Appendix A.

Examples of conduction heat transfer are legion. The exposed end of a metal
spoon suddenly immersed in a cup of hot coffee will eventually be warmed due to
the conduction of energy through the spoon. On a winter day there is significant
energy loss from a heated room to the outside air. This loss is principally due to
conduction heat transfer through the wall that separates the room air from the out-
side air.

It is possible to quantify heat transfer processes in terms of appropriate rate
equations. These equations may be used to compute the amount of energy being
transferred per unit time. For heat conduction, the rate equation is known as
Fourier’s law. For the one-dimensional plane wall shown in Figure 1.3, having a
temperature distribution T(x), the rate equation is expressed as

” dT

Ox = k& (1.1)
The heat flux g (W/m?) is the heat transfer rate in the x direction per unit area per-
pendicular to the direction of transfer, and it is proportional to the temperature gra-
dient, dT/dx, in this direction. The parameter k is a transport property known as the
thermal conductivity (W/m-K) and is a characteristic of the wall material. The
minus sign is a consequence of the fact that heat is transferred in the direction of de-
creasing temperature. Under the steady-state conditions shown in Figure 1.3, where
the temperature distribution is linear, the temperature gradient may be expressed as

dT:TZ_Tl

dx L

and the heat flux is then

-1

qx:_k L
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or

v 11— T AT
q. =k lL szT (1.2)

Note that this equation provides a heat flux, that is, the rate of heat transfer per unit
area. The heat rate by conduction, g, (W), through a plane wall of area A is then the
product of the flux and the area, q, = qj - A.

ExamPLE 1.1

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick
having a thermal conductivity of 1.7 W/m - K. Measurements made during steady-
state operation reveal temperatures of 1400 and 1150 K at the inner and outer sur-
faces, respectively. What is the rate of heat loss through a wall that is 0.5 m by
1.2 mon aside?

SOLUTION
|

Known: Steady-state conditions with prescribed wall thickness, area, thermal
conductivity, and surface temperatures.

Find: Wall heat loss.

Schematic:

k= 1.7 Wm-K
T, = 1400 K / T,=1150K

Wall area, A

Assumptions:
1. Steady-state conditions.
2. One-dimensional conduction through the wall.
3. Constant thermal conductivity.

Analysis:  Since heat transfer through the wall is by conduction, the heat flux
may be determined from Fourier’s law. Using Equation 1.2, we have

v AT _ . 250 K
g, =k 3 1.7Wim KXO.lSm

= 2833 W/m?
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The heat flux represents the rate of heat transfer through a section of unit area, and it
is uniform (invariant) across the surface of the wall. The heat loss through the wall
of area A =H X W is then

o = (HW)q; = (0.5m X 1.2 m) 2833 W/m? = 1700 W <

Comments: Note the direction of heat flow and the distinction between heat flux
and heat rate.

—

1.2.2 Convection

The convection heat transfer mode is comprised of two mechanisms. In addition to
energy transfer due to random molecular motion (diffusion), energy is also trans-
ferred by the bulk, or macroscopic, motion of the fluid. This fluid motion is associ-
ated with the fact that, at any instant, large numbers of molecules are moving col-
lectively or as aggregates. Such motion, in the presence of a temperature gradient,
contributes to heat transfer. Because the molecules in the aggregate retain their ran-
dom motion, the total heat transfer is then due to a superposition of energy transport
by the random motion of the molecules and by the bulk motion of the fluid. It is
customary to use the term convection when referring to this cumulative transport
and the term advection when referring to transport due to bulk fluid motion.

We are especially interested in convection heat transfer, which occurs between
a fluid in motion and a bounding surface when the two are at different temperatures.
Consider fluid flow over the heated surface of Figure 1.4. A consequence of the
fluid—surface interaction is the development of a region in the fluid through which
the velocity varies from zero at the surface to a finite value u,, associated with the
flow. This region of the fluid is known as the hydrodynamic, or velocity, boundary
layer. Moreover, if the surface and flow temperatures differ, there will be a region
of the fluid through which the temperature varies from T, at y = 0 to T, in the outer
flow. This region, called the thermal boundary layer, may be smaller, larger, or the
same size as that through which the velocity varies. In any case, if T, > T.,, convec-
tion heat transfer will occur from the surface to the outer flow.

The convection heat transfer mode is sustained both by random molecular mo-
tion and by the bulk motion of the fluid within the boundary layer. The contribution
due to random molecular motion (diffusion) dominates near the surface where the

y Fluid y
u., T.
e
4
- » Velocity Temperature
distribution distribution
u(y) q T(y)
T "
»x FIGURE 1.4

uy) Heated > T(y) Bounda?y layer develgpment in
surface convection heat transfer.
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fluid velocity is low. In fact, at the interface between the surface and the fluid
(y = 0), the fluid velocity is zero and heat is transferred by this mechanism only.
The contribution due to bulk fluid motion originates from the fact that the boundary
layer grows as the flow progresses in the x direction. In effect, the heat that is con-
ducted into this layer is swept downstream and is eventually transferred to the fluid
outside the boundary layer. Appreciation of boundary layer phenomena is essential
to understanding convection heat transfer. It is for this reason that the discipline of
fluid mechanics will play a vital role in our later analysis of convection.

Convection heat transfer may be classified according to the nature of the flow.
We speak of forced convection when the flow is caused by external means, such as
by a fan, a pump, or atmospheric winds. As an example, consider the use of a fan to
provide forced convection air cooling of hot electrical components on a stack of
printed circuit boards (Figure 1.5a). In contrast, for free (or natural) convection the
flow is induced by buoyancy forces, which are due to density differences caused by
temperature variations in the fluid. An example is the free convection heat transfer
that occurs from hot components on a vertical array of circuit boards in air (Figure
1.5b). Air that makes contact with the components experiences an increase in tem-
perature and hence a reduction in density. Since it is now lighter than the surround-
ing air, buoyancy forces induce a vertical motion for which warm air ascending
from the boards is replaced by an inflow of cooler ambient air.

While we have presumed pure forced convection in Figure 1.5a and pure nat-
ural convection in Figure 1.5b, conditions corresponding to mixed (combined)
forced and natural convection may exist. For example, if velocities associated with

Buoyancy-driven T T T
flow
Forced " a — Hot components = @ [
flow Air / on printed
— BEHEm circuit boards = = = q"
—_ = m m
—o—— AENNN =
— [OEOEERN = ||
ol 1|
(a) (b)
Moist air
q TWater
droplets
Cold
, water \ ®
r ] ° ) ] Ilf\\
Vapor - C o I‘l /
bubbles Water ¢ : /
Hot plate i i i i
(c) (d)

Ficure 1.5 Convection heat transfer processes. (a) Forced convection. (b) Natural

convection. (c) Boiling. (d) Condensation.
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the flow of Figure 1.5a are small and/or buoyancy forces are large, a secondary
flow that is comparable to the imposed forced flow could be induced. In this case,
the buoyancy-induced flow would be normal to the forced flow and could have a
significant effect on convection heat transfer from the components. In Figure 1.5b,
mixed convection would result if a fan were used to force air upward between the
circuit boards, thereby assisting the buoyancy flow, or downward, thereby opposing
the buoyancy flow.

We have described the convection heat transfer mode as energy transfer occur-
ring within a fluid due to the combined effects of conduction and bulk fluid motion.
Typically, the energy that is being transferred is the sensible, or internal thermal,
energy of the fluid. However, there are convection processes for which there is, in
addition, latent heat exchange. This latent heat exchange is generally associated
with a phase change between the liquid and vapor states of the fluid. Two special
cases of interest in this text are boiling and condensation. For example, convection
heat transfer results from fluid motion induced by vapor bubbles generated at the
bottom of a pan of boiling water (Figure 1.5¢) or by the condensation of water
vapor on the outer surface of a cold water pipe (Figure 1.5d).

Regardless of the particular nature of the convection heat transfer process, the
appropriate rate equation is of the form

q'=h(T, —T.) (1.3a)

where ", the convective heat flux (W/m?), is proportional to the difference between
the surface and fluid temperatures, T, and T., respectively. This expression is
known as Newton’s law of cooling, and the parameter h (W/m? - K) is termed the
convection heat transfer coefficient. It depends on conditions in the boundary layer,
which are influenced by surface geometry, the nature of the fluid motion, and an as-
sortment of fluid thermodynamic and transport properties.

Any study of convection ultimately reduces to a study of the means by which h
may be determined. Although consideration of these means is deferred to Chapter 6,
convection heat transfer will frequently appear as a boundary condition in the solu-
tion of conduction problems (Chapters 2 through 5). In the solution of such prob-
lems we presume h to be known, using typical values given in Table 1.1.

TaBLE 1.1  Typical values of the
convection heat transfer coefficient

Process h
(W/m? - K)
Free convection
Gases 2-25
Liquids 50-1000
Forced convection
Gases 25-250
Liquids 100-20,000

Convection with phase change
Boiling or condensation 2500-100,000
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When Equation 1.3a is used, the convection heat flux is presumed to be positive
if heat is transferred from the surface (T, > T.,) and negative if heat is transferred to
the surface (T., > T,). However, if T,. > T, there is nothing to preclude us from ex-
pressing Newton’s law of cooling as

q' =h(T,—Ty) (1.3b)

in which case heat transfer is positive if it is to the surface.

1.2.3 Radiation

Thermal radiation is energy emitted by matter that is at a nonzero temperature. Al-
though we will focus on radiation from solid surfaces, emission may also occur
from liquids and gases. Regardless of the form of matter, the emission may be at-
tributed to changes in the electron configurations of the constituent atoms or mole-
cules. The energy of the radiation field is transported by electromagnetic waves (or
alternatively, photons). While the transfer of energy by conduction or convection
requires the presence of a material medium, radiation does not. In fact, radiation
transfer occurs most efficiently in a vacuum.

Consider radiation transfer processes for the surface of Figure 1.6a. Radiation
that is emitted by the surface originates from the thermal energy of matter bounded
by the surface, and the rate at which energy is released per unit area (W/m?) is
termed the surface emissive power E. There is an upper limit to the emissive power,
which is prescribed by the Stefan-Boltzmann law

E,=oTs (1.4)

where T, is the absolute temperature (K) of the surface and o is the Stefan—
Boltzmann constant (o = 5.67 X 10~8 W/m? - K*). Such a surface is called an ideal
radiator or blackbody.

The heat flux emitted by a real surface is less than that of a blackbody at the
same temperature and is given by

E=g¢0T?: (1.5)

Gas
T..h
G E . Surroundings . N
]1_!\ ‘5; /qconv at Tsur qrad\ /qconv
Surface of emissivity Surface of emissivity T >Tg, T>T,
€, absorptivity o, and £ =a, area A, and
temperature T, temperature T
(a) (b)

F1GURE 1.6 Radiation exchange: (a) at a surface and (b) between a surface and large
surroundings.
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where ¢ is a radiative property of the surface termed the emissivity. With values in
the range 0 =< & = 1, this property provides a measure of how efficiently a surface
emits energy relative to a blackbody. It depends strongly on the surface material
and finish, and representative values are provided in Appendix A.

Radiation may also be incident on a surface from its surroundings. The radia-
tion may originate from a special source, such as the sun, or from other surfaces to
which the surface of interest is exposed. Irrespective of the source(s), we designate
the rate at which all such radiation is incident on a unit area of the surface as the ir-
radiation G (Figure 1.6a).

A portion, or all, of the irradiation may be absorbed by the surface, thereby in-
creasing the thermal energy of the material. The rate at which radiant energy is ab-
sorbed per unit surface area may be evaluated from knowledge of a surface radia-
tive property termed the absorptivity «. That is,

G = aG (1.6)

where 0 =a = 1. If « <1 and the surface is opaque, portions of the irradiation are
reflected. If the surface is semitransparent, portions of the irradiation may also be
transmitted. However, while absorbed and emitted radiation increase and reduce, re-
spectively, the thermal energy of matter, reflected and transmitted radiation have no
effect on this energy. Note that the value of a depends on the nature of the irradiation,
as well as on the surface itself. For example, the absorptivity of a surface to solar radi-
ation may differ from its absorptivity to radiation emitted by the walls of a furnace.

In many engineering problems (a notable exception being problems involving
solar radiation or radiation from other very high temperature sources), liquids can
be considered opaque, and gases can be considered transparent, to radiation heat
transfer. Solids can be opaque (as is the case for metals) or semitransparent (as is
the case for thin sheets of some polymers and some semiconducting materials).

A special case that occurs frequently involves radiation exchange between a
small surface at T, and a much larger, isothermal surface that completely surrounds
the smaller one (Figure 1.6b). The surroundings could, for example, be the walls of a
room or a furnace whose temperature T, differs from that of an enclosed surface
(Tgr # Tg). We will show in Chapter 12 that, for such a condition, the irradiation may
be approximated by emission from a blackbody at T, in which case G = ¢T4,. If
the surface is assumed to be one for which a = ¢ (a gray surface), the net rate of ra-
diation heat transfer from the surface, expressed per unit area of the surface, is

n q
Orad = A = &Ey(Ty) —aG = 30’(T§ - Tstr (1.7)

This expression provides the difference between thermal energy that is released due
to radiation emission and that which is gained due to radiation absorption.

There are many applications for which it is convenient to express the net radia-
tion heat exchange in the form

Orad = hrA(Ts - Tsur) (1-8)
where, from Equation 1.7, the radiation heat transfer coefficient h, is
hl’ = 80-(TS + Tsur)(Tsz + TSZUI’ (19)

Here we have modeled the radiation mode in a manner similar to convection. In this
sense we have linearized the radiation rate equation, making the heat rate proportional
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to a temperature difference rather than to the difference between two temperatures
to the fourth power. Note, however, that h, depends strongly on temperature, while
the temperature dependence of the convection heat transfer coefficient h is generally
weak.

The surfaces of Figure 1.6 may also simultaneously transfer heat by convection
to an adjoining gas. For the conditions of Figure 1.6b, the total rate of heat transfer
from the surface is then

4 = Geonv + Grag = DA(Ts — T.) + ‘9A0'(T§ - T?ur (1.20)

EXAMPLE 1.2

An uninsulated steam pipe passes through a room in which the air and walls are at
25°C. The outside diameter of the pipe is 70 mm, and its surface temperature and
emissivity are 200°C and 0.8, respectively. What are the surface emissive power
and irradiation? If the coefficient associated with free convection heat transfer from
the surface to the air is 15 W/m? - K, what is the rate of heat loss from the surface
per unit length of pipe?

SOLUTION

Known: Uninsulated pipe of prescribed diameter, emissivity, and surface tem-
perature in a room with fixed wall and air temperatures.

Find:
1. Surface emissive power and irradiation.
2. Pipe heat loss per unit length, q'.

Schematic:
Air ,’
T.=25°C
h=15W/m
D=70m
Assumptions:

1. Steady-state conditions.

2. Radiation exchange between the pipe and the room is between a small surface
and a much larger enclosure.

3. The surface emissivity and absorptivity are equal.
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Analysis:

1. The surface emissive power may be evaluated from Equation 1.5, while the ir-

radiation corresponds to G =oT4,. Hence

E = eoT/ = 0.8(5.67 X 10 8W/m? - K*) (473 K)* = 2270 W/m?
G = oTL, = 5.67 X 10 8 W/m? - K* (298 K)* = 447 W/m?

2. Heat loss from the pipe is by convection to the room air and by radiation ex-
change with the walls. Hence, q = (n + 0g @nd from Equation 1.10, with
A = DL,

q = h(#DL)(T, — T.) + e(#DL)o(Ti— TS,

The heat loss per unit length of pipe is then
q = % = 15W/m? - K(7 X 0.07 m)(200 — 25)°C

+ 0.8(7 X 0.07m) 5.67 X 10 8 W/m? - K* (473* — 298%) K*
q' =577 W/m +421 W/m = 998 W/m <

Comments:

1. Note that temperature may be expressed in units of °C or K when evaluating
the temperature difference for a convection (or conduction) heat transfer rate.
However, temperature must be expressed in kelvins (K) when evaluating a ra-
diation transfer rate.

2. The net rate of radiation heat transfer from the pipe may be expressed as

Grag = 7D (E — Q)
Orag = 7 X 0.07 M (2270 — 0.8 X 447) W/m? = 421 W/m

3. In this situation the radiation and convection heat transfer rates are comparable
because T, is large compared to T, and the coefficient associated with free con-
vection is small. For more moderate values of T and the larger values of h asso-
ciated with forced convection, the effect of radiation may often be neglected.
The radiation heat transfer coefficient may be computed from Equation 1.9, and
for the conditions of this problem its value is h, = 11 W/m? - K .

4. This example is provided as a tutorial session in the Interactive Heat Transfer
(IHT) software accompanying your text.

—

1.2.4 Relationship to Thermodynamies

At this point it is appropriate to note the fundamental differences between heat
transfer and thermodynamics. Although thermodynamics is concerned with the heat
interaction and the vital role it plays in the first and second laws, it considers neither
the mechanisms that provide for heat exchange nor the methods that exist for com-
puting the rate of heat exchange. Thermodynamics is concerned with equilibrium
states of matter, where an equilibrium state necessarily precludes the existence of a
temperature gradient. Although thermodynamics may be used to determine the amount
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of energy required in the form of heat for a system to pass from one equilibrium
state to another, it does not acknowledge that heat transfer is inherently a nonequi-
librium process. For heat transfer to occur, there must be a temperature gradient
and, hence, thermodynamic nonequilibrium. The discipline of heat transfer there-
fore seeks to do what thermodynamics is inherently unable to do, namely, to quan-
tify the rate at which heat transfer occurs in terms of the degree of thermal nonequi-
librium. This is done through the rate equations for the three modes, expressed, for
example, by Equations 1.2, 1.3, and 1.7.

1.3

The Conservation of Energy Requirement

The subjects of thermodynamics and heat transfer are highly complementary. For
example, because it treats the rate at which heat is transferred, the subject of heat
transfer may be viewed as an extension of thermodynamics. Conversely, for many
heat transfer problems, the first law of thermodynamics (the law of conservation of
energy) provides a useful, often essential, tool. In anticipation of such problems,
general formulations of the first law are now obtained.

1.3.1 Conservation of Energy for a Control Volume

At its heart, the first law of thermodynamics is simply a statement that the total energy
of a system is conserved, and therefore the only way that the amount of energy in a
system can change is if energy crosses its boundaries. The first law also addresses the
ways in which energy can cross the boundaries of a system. For a closed system (a re-
gion of fixed mass), there are only two: heat transfer through the boundaries and work
done on or by the system. This leads to the following statement of the first law for a
closed system, which will be familiar if you have taken a course in thermodynamics:

AEZ'=Q-W (1.11a)

where AE®" is the change in the total energy stored in the system, Q is the net heat
transferred to the system, and W is the net work done by the system. This is
schematically illustrated in Figure 1.7a.

- -

,/ \\\
/ \
Em \ Eg Est \‘
.
\\\‘ \INEOM
______ \\\~_—’//
(b)

FiGURE 1.7  Conservation of energy: (a) for a closed system over a time interval, and (b) for a
control volume at an instant.
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The first law can also be applied to a control volume (or open system), a region
of space bounded by a control surface through which mass may pass. Mass entering
and leaving the control volume carries energy with it; this process, termed energy
advection, adds a third way in which energy can cross the boundaries of a control
volume. To summarize, the first law of thermodynamics can be very simply stated
as follows for both a control volume and a closed system.

First Law of Thermodynamics over a Time Interval (At)

The increase in the amount of energy stored in a control volume must equal the amount of
energy that enters the control volume, minus the amount of energy that leaves the control
volume.

In applying this principle, it is recognized that energy can enter and leave the
control volume due to heat transfer through the boundaries, work done on or by the
control volume, and energy advection.

The first law of thermodynamics addresses total energy, which consists of Ki-
netic and potential energies (together known as mechanical energy) and internal
energy. Internal energy can be further subdivided into thermal energy (which will
be defined more carefully later) and other forms of internal energy such as chemical
and nuclear energy. For the study of heat transfer, we wish to focus attention on
the thermal and mechanical forms of energy. We must recognize that the sum of
thermal and mechanical energy is not conserved, because there can be conversion
between other forms of energy and thermal energy. For example, if a chemical reac-
tion occurs that decreases the amount of chemical energy in the system, it will result
in an increase in the thermal energy of the system. Thus, we can think of energy con-
version as resulting in thermal energy generation (which can be either positive or neg-
ative). So, a statement of the first law that is well suited for heat transfer analysis is:

Thermal and Mechanical Energy Equation over a Time Interval (At)

The increase in the amount of thermal and mechanical energy stored in the control volume
must equal the amount of thermal and mechanical energy that enters the control volume,
minus the amount of thermal and mechanical energy that leaves the control volume, plus
the amount of thermal energy that is generated within the control volume.

This expression applies over a time interval At, and all the energy terms are mea-
sured in joules. Since the first law must be satisfied at each and every instant of time
t, we can also formulate the law on a rate basis. That is, at any instant, there must be
a balance between all energy rates, as measured in joules per second (W). In words,
this is expressed as:

Thermal and Mechanical Energy Equation at an Instant (t)

The rate of increase of thermal and mechanical energy stored in the control volume must
equal the rate at which thermal and mechanical energy enter the control volume, minus
the rate at which thermal and mechanical energy leave the control volume, plus the rate
at which thermal energy is generated within the control volume.

If the inflow and generation of thermal and mechanical energy exceed the outflow,
there must be an increase in the amount of thermal and mechanical energy stored
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(accumulated) in the control volume; if the converse is true, there will be a decrease
in thermal and mechanical energy storage. If the inflow and generation equal the
outflow, a steady-state condition must prevail such that there will be no change in
the amount of thermal and mechanical energy stored in the control volume.

We will now define symbols for each of the energy terms so that the boxed
statements can be rewritten as equations. We let E stand for the sum of thermal and
mechanical energy (in contrast to the symbol E* for total energy). Using the sub-
script st to denote energy stored in the control volume, the change in thermal and me-
chanical energy stored over the time interval At is then AEg. The subscripts in and
out refer to energy entering and leaving the control volume. Finally, thermal energy
generation is given the symbol E,. Thus, the first boxed statement can be written as:

AEy = Ej—Eq + E, (1.11b)

Next, using a dot over a term to indicate a rate, the second boxed statement
becomes:

By _

Eq=—3" =En— Eu + E (1.11c)

This expression is illustrated schematically in Figure 1.7b.

Equations 1.11b,c provide important and, in some cases, essential tools for solv-
ing heat transfer problems. Every application of the first law must begin with the
identification of an appropriate control volume and its control surface, to which an
analysis is subsequently applied. The first step is to indicate the control surface by
drawing a dashed line. The second step is to decide whether to perform the analysis
for a time interval At (Equation 1.11b) or on a rate basis (Equation 1.11c). This
choice depends on the objective of the solution and the way in which information is
given in the problem. The next step is to identify the energy terms that are relevant in
the problem you are solving. To develop your confidence in taking this last step, the
remainder of this section is devoted to clarifying the following energy terms:

« Stored thermal and mechanical energy, E.
* Thermal energy generation, E,.

» Thermal and mechanical energy transport across the control surfaces, that is, the
inflow and outflow terms, E;, and E;.

In the statement of the first law (Equation 1.11a), the total energy, E, consists
of kinetic energy (KE = %mV?, where m and V are mass and velocity, respectively),
potential energy (PE = mgz, where g is the gravitational acceleration and z is the
vertical coordinate), and internal energy (U). Mechanical energy is defined as the
sum of kinetic and potential energy. It will most often be the case in heat transfer
problems that the changes in kinetic and potential energy are small and can be ne-
glected. The internal energy consists of a sensible component, which accounts for
the translational, rotational, and/or vibrational motion of the atoms/molecules com-
prising the matter; a latent component, which relates to intermolecular forces influ-
encing phase change between solid, liquid, and vapor states; a chemical component,
which accounts for energy stored in the chemical bonds between atoms; and a nu-
clear component, which accounts for the binding forces in the nucleus.
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For the study of heat transfer, we focus attention on the sensible and latent
components of the internal energy (U, and U,,, respectively), which are together
referred to as thermal energy, U.. The sensible energy is the portion that we associ-
ate mainly with changes in temperature (although it can also depend on pressure).
The latent energy is the component we associate with changes in phase. For exam-
ple, if the material in the control volume changes from solid to liquid (melting) or
from liquid to vapor (vaporization, evaporation, boiling), the latent energy in-
creases. Conversely, if the phase change is from vapor to liquid (condensation) or
from liquid to solid (solidification, freezing), the latent energy decreases. Obvi-
ously, if there is no phase change occurring, there is no change in latent energy, and
this term can be neglected.

Based on the above discussion, the stored thermal and mechanical energy is
given by E; = KE + PE + U,, where U; = Uy, + U, In many problems, the only
relevant energy term will be the sensible energy, that is, Eq; = Ugs.

The energy generation term is associated with conversion from some other
form of internal energy (chemical, electrical, electromagnetic, or nuclear) to ther-
mal energy. It is a volumetric phenomenon. That is, it occurs within the control vol-
ume and is generally proportional to the magnitude of this volume. For example, an
exothermic chemical reaction may be occurring, converting chemical energy to
thermal energy. The net effect is an increase in the thermal energy of the matter
within the control volume. Another source of thermal energy is the conversion from
electrical energy that occurs due to resistance heating when an electric current is
passed through a conductor. That is, if an electric current I passes through a resis-
tance R in the control volume, electrical energy is dissipated at a rate 1°R, which
corresponds to the rate at which thermal energy is generated (released) within the
volume. In all applications of interest in this text, if chemical, electrical, or nuclear
effects exist, they are treated as sources (or sinks, which correspond to negative
sources) of thermal energy and hence are included in the generation terms of Equa-
tions 1.11b,c.

The inflow and outflow terms are surface phenomena. That is, they are associ-
ated exclusively with processes occurring at the control surface and are generally
proportional to the surface area. As discussed previously, the energy inflow and out-
flow terms include heat transfer (which can be by conduction, convection, and/or
radiation) and work interactions occurring at the system boundaries (e.g., due to dis-
placement of a boundary, a rotating shaft, and/or electromagnetic effects). For cases
in which mass crosses the control volume boundary (e.g., for situations involving
fluid flow), the inflow and outflow terms also include energy (thermal and mechani-
cal) advected (carried) by mass entering and leaving the control volume. For in-
stance, if the mass flow rate entering through the boundary is m, then the rate at
which thermal and mechanical energy enters with the flow is m (u, + %V? + gz),
where u; is the thermal energy per unit mass.

When the first law is applied to a control volume with fluid crossing its bound-
ary, it is customary to divide the work term into two contributions. The first contri-
bution, termed flow work, is associated with work done by pressure forces moving
fluid through the boundary. For a unit mass, the amount of work is equivalent to the
product of the pressure and the specific volume of the fluid (pv). The symbol W is
traditionally used for the remainder of the work term (not including flow work). If
operation is under steady-state conditions (dEg/dt = 0) and there is no thermal en-
ergy generation, Equation 1.11c reduces to the following form of the steady-flow
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Reference height

FIGURE 1.8 Conservation of energy for a steady-flow, open system.

energy equation (see Figure 1.8) which will be familiar if you have taken a thermo-
dynamics course:

m (U, + pv + %V? + gz);, — m (U, + pv + %BV2 + g2)o + 0 — W =0 (1.11d)

Terms within the parentheses are expressed for a unit mass of fluid at the inflow and
outflow locations. When multiplied by the mass flow rate m, they yield the rate at
which the corresponding form of the energy (thermal, flow work, Kinetic, and po-
tential) enters or leaves the control volume. The sum of thermal energy and flow
work per unit mass may be replaced by the enthalpy per unit mass, i = u, + pv.

In most open system applications of interest in this text, changes in latent en-
ergy between the inflow and outflow conditions of Equation 1.11d may be ne-
glected, so the thermal energy reduces to only the sensible component. If the fluid is
approximated as an ideal gas with constant specific heats, the difference in en-
thalpies (per unit mass) between the inlet and outlet flows may then be expressed as
(iin = Tou) = €, (Tin — Touw), Where c, is the specific heat at constant pressure and
T;, and T, are the inlet and outlet temperatures, respectively. If the fluid is an in-
compressible liquid, its specific heats at constant pressure and volume are equal,
¢, = ¢, = ¢, and for Equation 1.11d the change in sensible energy (per unit mass)
reduces to (Ugi, — Uyou) = C(Tin — Tou)- Unless the pressure drop is extremely large,
the difference in flow work terms, (pv)i, — (Pv)ou 1S Negligible for a liquid.

Having already assumed steady-state conditions, no changes in latent energy,
and no thermal energy generation, there are at least four cases in which further as-
sumptions can be made to reduce Equation 1.11d to the simplified steady-flow ther-
mal energy equation;

q= m Cp(Tout — 1y (1.11e)

The right-hand side of Equation 1.11e represents the net rate of outflow of enthalpy
(thermal energy plus flow work) for an ideal gas or of thermal energy for an incom-
pressible liquid.

The first two cases for which Equation 1.11e holds can readily be verified by
examining Equation 1.11d. They are:

1. An ideal gas with negligible kinetic and potential energy changes and negligi-
ble work (other than flow work).



18

Chapter 1 m Introduction

2. An incompressible liquid with negligible kinetic and potential energy changes
and negligible work, including flow work. As noted in the preceding discus-
sion, flow work is negligible for an incompressible liquid provided the pressure
variation is not too great.

The second pair of cases cannot be directly derived from Equation 1.11d but require
further knowledge of how mechanical energy is converted into thermal energy.
These cases are:

3. Anideal gas with negligible viscous dissipation and negligible pressure variation.
4. An incompressible liquid with negligible viscous dissipation.

Viscous dissipation is the conversion from mechanical energy to thermal energy as-
sociated with viscous forces acting in a fluid. It is only important in cases involving
high-speed flow and/or highly viscous fluid. Since so many engineering applica-
tions satisfy one or more of the above four conditions, Equation 1.11e is commonly
used for the analysis of heat transfer in moving fluids. It will be used in Chapter 8 in
the study of convection heat transfer in internal flow.

The mass flow rate m of the fluid may be expressed as m = pVA,, where p is the
fluid density and A, is the cross-sectional area of the channel through which the
fluid flows. The volumetric flow rate is simply V = VA, = m/p.

ExamPLE 1.3

A long conducting rod of diameter D and electrical resistance per unit length R, is
initially in thermal equilibrium with the ambient air and its surroundings. This equi-
librium is disturbed when an electrical current | is passed through the rod. Develop
an equation that could be used to compute the variation of the rod temperature with
time during passage of the current.

SOLUTION

Known: Temperature of a rod of prescribed diameter and electrical resistance
changes with time due to passage of an electrical current.

Find: Equation that governs temperature change with time for the rod.

Schematic:

/ T TSUV%
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Assumptions:
1. Atany time t the temperature of the rod is uniform.
2. Constant properties (p, ¢, & = a)

3. Radiation exchange between the outer surface of the rod and the surroundings
is between a small surface and a large enclosure.

Analysis:  The first law of thermodynamics may often be used to determine an
unknown temperature. In this case, relevant terms include heat transfer by con-
vection and radiation from the surface, energy generation due to Ohmic heating
within the conductor, and a change in thermal energy storage. Since we wish to
determine the rate of change of the temperature, the first law should be applied at an
instant of time. Hence, applying Equation 1.11c to a control volume of length L
about the rod, it follows that

I.Eg — B = Eq

where energy generation is due to the electric resistance heating,
E, = I°RiL

Heating occurs uniformly within the control volume and could also be expressed in
terms of a volumetric heat generation rate ¢ (W/m®). The generation rate for the
entire control volume is then E; = qV, where q = I2R,/(mD?%4). Energy outflow is
due to convection and net radiation from the surface, Equations 1.3a and 1.7,
respectively,

E, = h(#DL)(T — T..) + eo(aDL)(T* — TZ,

and the change in energy storage is due to the temperature change,

- du, ¢
Eq= g = gt °ven)

The term E is associated with the rate of change in the internal thermal energy of
the rod, where p and c are the mass density and the specific heat, respectively, of the
rod material, and V is the volume of the rod, V = (#D%4)L. Substituting the rate
equations into the energy balance, it follows that

2
I’RIL — h(mDL)(T — T.) — so(aDL)(T* — T4) = pc <7TE>L%I
Hence
dT _ I1°R, — 7Dh(T —T,) — 7TD€O'(T4 —Ti, 4
dt pc(mD?/4)
Comments:

1. The above equation could be solved for the time dependence of the rod temper-
ature by integrating numerically. A steady-state condition would eventually be
reached for which dT/dt = 0. The rod temperature is then determined by an al-
gebraic equation of the form

aDh(T — T,) + 7Dea(T* — T4,) = I °R,
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2. For fixed environmental conditions (h, T.., T,), as well as a rod of fixed geome-
try (D) and properties (g, R;), the steady-state temperature depends on the rate
of thermal energy generation and hence on the value of the electric current.
Consider an uninsulated copper wire (D = 1 mm, £ = 0.8, R, = 0.4Q/m) in a
relatively large enclosure (T, = 300 K) through which cooling air is circulated
(h =100 W/m? - K, T.. = 300 K). Substituting these values into the foregoing
equation, the rod temperature has been computed for operating currents in the
range 0 = | = 10 A and the following results were obtained:

150
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T(°C)

75

60 [ e
50

25

0 2 4 52 6 8 10
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3. If a maximum operating temperature of T = 60°C is prescribed for safety rea-
sons, the current should not exceed 5.2 A. At this temperature, heat transfer by
radiation (0.6 W/m) is much less than heat transfer by convection (10.4 W/m).
Hence, if one wished to operate at a larger current while maintaining the rod
temperature within the safety limit, the convection coefficient would have to
be increased by increasing the velocity of the circulating air. For h =250
W/m?- K, the maximum allowable current could be increased to 8.1 A.

4. The Interactive Heat Transfer (IHT) software accompanying your text is espe-
cially useful for solving equations, such as the energy balance in Comment 1,
and generating the graphical results of Comment 2. To apply IHT for this pur-
pose, key the energy balance into the Workspace using the following free-form
symbol format.

pi*D*h*(T — Tinf)+ pi*D*eps*sigma™(T4 — Tsur*4) = 1"2*Re’

Next, key in the known input parameters, press Solve, and find T. To determine
T for the operating current range, 0 < 1=10A, use the Explore feature to
sweep over the variable I. You may plot T vs | using the Graph feature and
may label the plot to provide a professional appearance.

_

ExAmPLE 1.4

A hydrogen-air Proton Exchange Membrane (PEM) fuel cell is illustrated below. It
consists of an electrolytic membrane sandwiched between porous cathode and
anode materials, forming a very thin, three-layer membrane electrode assembly
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(MEA). At the anode, protons and electrons are generated (2H, — 4H* + 4e7),
while at the cathode the protons and electrons recombine to form water (O, + 4e™ +
4H* — 2H,0). The overall reaction is then 2H, + O, — 2H,0. The dual role of the
electrolytic membrane is to transfer hydrogen ions and serve as a barrier to electron
transfer, forcing the electrons to the electrical load that is external to the fuel cell.
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L— Electrolytic membrane
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The membrane must operate in a moist state in order to conduct ions. However,
the presence of liquid water in the cathode material may block the oxygen from
reaching the cathode reaction sites, resulting in failure of the fuel cell. Therefore, it
is critical to control the temperature of the fuel cell, T, so that the cathode side con-
tains saturated water vapor.

For a given set of H, and air inlet flow rates and use of a 50 mm X 50 mm
MEA, the fuel cell generates P = | - E, = 9 W of electrical power, associated with a
cell voltage E. = 0.6 volts and electric current | = 15 A. Saturated vapor conditions
exist in the fuel cell, corresponding to T, = Ty, = 56.4°C. The overall electrochemi-
cal reaction is exothermic and the corresponding thermal generation rate of E, =
11.25 W must be removed from the fuel cell by convection and radiation. The ambi-
ent and surrounding temperatures are T., = Ty, = 25°C, and the relationship between
the cooling air velocity and the convection heat transfer coefficient, h, is

h =109 W - $%/m?® - K x V08
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where V has units of m/s. The exterior surface of the fuel cell has an emissivity of
& = 0.88. Determine the value of the cooling air velocity needed to maintain steady-
state operating conditions. Assume the edges of the fuel cell are well insulated.

SOLUTION

I

Known: Ambient and surrounding temperatures, fuel cell output voltage and
electrical current, heat generated by the overall electrochemical reaction, and the
desired fuel cell operating temperature.

Find: The required cooling air velocity, V, needed to maintain steady-state oper-
ation at T, =~ 56.4°C.

Schematic:
-
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Assumptions:

1. Steady-state conditions.

Negligible temperature variations within the fuel cell.
Fuel cell is placed in large surroundings.

Edges of the fuel cell are well insulated.

Negligible energy entering or leaving the control volume due to gas or liquid
flows.

o~ wn

Analysis:  To determine the required cooling air velocity, we must first perform
an energy balance on the fuel cell. With E;, = 0 and E,, = E

OeonvF Orag = Eg:11.25 w

o}l
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where
Orad = SAO'(Té - Ts‘Lr
= 0.88 X (2X0.05m X 0.05m) X 5.67 X 10~8 W/m?-K* X (329.4* — 298*)K*
=097W
Therefore, we may find
Qeony = 11.25W — 0.97 W = 10.28 W
=hA(T, - T.)
=109W - s%8/m?8 . K X V08 A(T,—T,)

which may be rearranged to yield

Vo [ 10.28 W ]“5
10.9 W-s"¥/m?8.K X (2 X 0.05m X 0.05m) X (56.4 — 25)°C
V =94m/s

Comments:

1. Temperature and humidity of the MEA will vary from location to location
within the fuel cell. Prediction of the local conditions within the fuel cell would
require a more detailed analysis.

2. The required cooling air velocity is quite high. Decreased cooling velocities
could be used if heat transfer enhancement devices were added to the exterior
of the fuel cell.

3. The convective heat rate is significantly greater than the radiation heat rate.

4. The chemical energy (20.25 W) of the hydrogen and oxygen is converted to
electrical (9 W) and thermal (11.25 W) energy. This fuel cell operates at a con-
version efficiency of (9 W)/(20.25 W) X 100 = 44 percent.

_

EXAMPLE 1.5

Large PEM fuel cells, such as those used in automotive applications, often require in-
ternal cooling using pure liquid water to maintain their temperature at a desired level
(see Example 1.4). In cold climates, the cooling water must be drained from the fuel
cell to an adjoining container when the automobile is turned off so that harmful freez-
ing does not occur within the fuel cell. Consider a mass M of ice that was frozen while
the automobile was not being operated. The ice is at the fusion temperature (T; = 0°C)
and is enclosed in a cubical container of width W on a side. The container wall is of
thickness L and thermal conductivity k. If the outer surface of the wall is heated to a
temperature T, > T; to melt the ice, obtain an expression for the time needed to melt
the entire mass of ice and, in turn, deliver cooling water to, and energize, the fuel cell.

SOLUTION
|

Known: Mass and temperature of ice. Dimensions, thermal conductivity, and
outer surface temperature of containing wall.
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Find: Expression for time needed to melt the ice.
Schematic:

Section A-A —k
A [

ST 3 .
il —
Ein >: 1 !
1 AEg 1
1 1
1 1
1 i !
Ice-water T
) W N mixture (T;) L

Assumptions:
1. Inner surface of wall is at T, throughout the process.
2. Constant properties.
3. Steady-state, one-dimensional conduction through each wall.
4, Conduction area of one wall may be approximated as W? (L <W).

Analysis:  Since we must determine the melting time t,,, the first law should be
applied over the time interval At = t,. Hence, applying Equation 1.11b to a control
volume about the ice—water mixture, it follows that

Ein = AEy = AUy

where the increase in energy stored within the control volume is due exclusively to
the change in latent energy associated with conversion from the solid to liquid state.
Heat is transferred to the ice by means of conduction through the container wall,
and since the temperature difference across the wall is assumed to remain at
(T,—Ty) throughout the melting process, the wall conduction rate is a constant

T, - T

Ocond = k(6W2) ?

and the amount of energy inflow is

T,-T
E, = [k(GWZ) ! - f} t,

The amount of energy required to effect such a phase change per unit mass of solid is
termed the latent heat of fusion hg;. Hence the increase in energy storage is

AEy = Mhy

By substituting into the first law expression, it follows that
B Mhg L
CBWkK(T, - T)

tn

Comments:

1. Several complications would arise if the ice were initially subcooled. The storage
term would have to include the change in sensible (internal thermal) energy required
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to take the ice from the subcooled to the fusion temperature. During this process,
temperature gradients would develop in the ice.

2. Consider a cavity of width W = 100 mm on a side, wall thickness L = 5 mm,
and thermal conductivity k = 0.05 W/m - K. The mass of the ice in the cavity is

M = p(W — 2L)% = 920 kg/m* X (0.100 — 0.01)* m® = 0.67 kg
If the outer surface temperature is T, = 30°C, the time required to melt the ice is

0,67 kg X 334,000 J/kg X 0.005m
6(0.100 m)? X 0.05 W/m - K (30 — 0)°C

m =1243 s = 20.7 min
The density and latent heat of fusion of the ice are p, = 920 kg/m® and
hy = 334 kJ/kg, respectively.

3. Note that the units of K and °C cancel each other in the foregoing expression
for t,,. Such cancellation occurs frequently in heat transfer analysis and is due
to both units appearing in the context of a temperature difference.

—

1.3.2 The Surface Energy Balance

We will frequently have occasion to apply the conservation of energy requirement
at the surface of a medium. In this special case the control surfaces are located on
either side of the physical boundary and enclose no mass or volume (see Figure 1.9).
Accordingly, the generation and storage terms of the conservation expression, Equa-
tion 1.11c, are no longer relevant and it is only necessary to deal with surface
phenomena. For this case the conservation requirement becomes

Ein — Equ =0 (1.12)

Even though thermal energy generation may be occurring in the medium, the process
would not affect the energy balance at the control surface. Moreover, this conserva-
tion requirement holds for both steady-state and transient conditions.

In Figure 1.9 three heat transfer terms are shown for the control surface. On a
unit area basis they are conduction from the medium to the control surface (Qoong).

Surroundings
TSUI’
/'q'rlad
Fluid
T,
qconv l l
Ugo Ty
T FiGure 1.9

The energy balance for conservation
Control surfaces of energy at the surface of a medium.
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convection from the surface to a fluid (q,,), and net radiation exchange from the
surface to the surroundings (qy,). The energy balance then takes the form

qgond - q::’onv - q,r’ad =0 (1.13)
and we can express each of the terms using the appropriate rate equations, Equa-
tions 1.2, 1.3a, and 1.7.

EXAMPLE 1.6

Humans are able to control their heat production rate and heat loss rate to maintain
a nearly constant core temperature of T, = 37°C under a wide range of environmen-
tal conditions. This process is called thermoregulation. From the perspective of cal-
culating heat transfer between a human body and its surroundings, we focus on a
layer of skin and fat, with its outer surface exposed to the environment and its inner
surface at a temperature slightly less than the core temperature, T; = 35°C = 308 K.
Consider a person with a skin/fat layer of thickness L = 3 mm and effective thermal
conductivity k = 0.3 W/m - K. The person has a surface area A = 1.8 m? and is
dressed in a bathing suit. The emissivity of the skin is £ = 0.95.

1. When the person is in still air at T,, = 297 K, what is the skin surface tempera-
ture and rate of heat loss to the environment? Convection heat transfer to the air
is characterized by a free convection coefficient of h = 2 W/m? - K.

2. When the person is in water at T,, = 297 K, what is the skin surface tempera-
ture and heat loss rate? Heat transfer to the water is characterized by a convec-
tion coefficient of h = 200 W/m? - K.

SOLUTION
|

Known: Inner surface temperature of a skin/fat layer of known thickness, ther-
mal conductivity, emissivity, and surface area. Ambient conditions.

Find: Skin surface temperature and heat loss rate for the person in air and the
person in water.

Schematic:
Ti=308 K~ quinsfat
T, =297 K —
q(;ond_>l
I
I
I
k=0.3WmkK —f— I T.=297K

' h = 2 W/im?K (Air)

<= L=3mm —>|

h = 200 W/m?K (Water)
Air or water
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Assumptions:

1. Steady-state conditions.
One-dimensional heat transfer by conduction through the skin/fat layer.
Thermal conductivity is uniform.

Radiation exchange between the skin surface and the surroundings is between a
small surface and a large enclosure at the air temperature.

Liquid water is opaque to thermal radiation.
Bathing suit has no effect on heat loss from body.
Solar radiation is negligible.

Body is completely immersed in water in part 2.

>N

© N o o

Analysis:
1. The skin surface temperature may be obtained by performing an energy balance
at the skin surface. From Equation 1.12,
I-Ein - Eout =0
It follows that, on a unit area basis,
qt’:,ond - q::’onv - q,r,ad =0
or, rearranging and substituting from Equations 1.2, 1.3a, and 1.7,

Ti - Ts
L
The only unknown is T, but we cannot solve for it explicitly because of the fourth
power dependence of the radiation term. Therefore, we must solve the equation iter-
atively, which can be done by hand or by using IHT or some other equation solver.

To expedite a hand solution, we write the radiation heat flux in terms of the radia-
tion heat transfer coefficient, using Equations 1.8 and 1.9:

T,—T
kl?s =h(T; = T.) + h(T, — Tg,)

k

=h(T, - T.) + 30(T34 - Tstr)

Solving for T, with Ty, = T.,, we have

KT,
—+ (h+ h)T..
oL

s k
L + (h +h)
We estimate h, using Equation 1.9 with a guessed value of T, = 305 Kand T., =
297 K, to yield h, = 5.9 W/m?- K. Then, substituting numerical values into the
above equation, we find

03 Wim - K X 308K | 4 5 9) wim?-K x 297 K

3x107%m
- =307.2K
0.3 Wim-K 3 4+ 5.9) Wim? - K
3x10°%m

With this new value of T, we can recalculate h, and T,, which are unchanged. Thus
the skin temperature is 307.2 K = 34°C. <
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The rate of heat loss can be found by evaluating the conduction through the skin/fat
layer:
Ti - Ts

qszkAizo.BW/m-le.Bmzxw

=146 W <
L 3x10%m

2. Since liquid water is opaque to thermal radiation, heat loss from the skin sur-
face is by convection only. Using the previous expression with h, = 0, we find

0.3W/m-K><308K+200W/m2.|<><297|<

3xX10°%m
T, = =300.7K <
03WIm - K 500 wim? - K
3xX10°m
and
T-T ~ 300.
G = kA% = 0.3 W/m - K X 1.8m2xw= 1320W <
L 3xX10°%m
Comments:

1. When using energy balances involving radiation exchange, the temperatures
appearing in the radiation terms must be expressed in kelvins, and it is good
practice to use kelvins in all terms to avoid confusion.

2. In part 1, heat losses due to convection and radiation are 37 W and 109 W, re-
spectively. Thus, it would not have been reasonable to neglect radiation. Care
must be taken to include radiation when the heat transfer coefficient is small (as
it often is for natural convection to a gas), even if the problem statement does
not give any indication of its importance.

3. Atypical rate of metabolic heat generation is 100 W. If the person stayed in the
water too long the core body temperature would begin to fall. The large heat
loss in water is due to the higher heat transfer coefficient, which in turn is due
to the much larger thermal conductivity of water compared to air.

4. The skin temperature of 34°C in part 1 is comfortable, but the skin temperature
of 28°C in part 2 is uncomfortably cold.

5. By entering the energy balance and appropriate input parameters in the IHT
Workspace, a model of the system may be developed for calculating T and g
or any other system parameter. With this model, parameter sensitivity studies
may be performed to explore, for example, the effect of changing h on T,.
Wherever possible, it is good practice to validate your model against a known
solution, which in this case is shown in the foregoing analysis.

_

1.3.3 Application of the

Conservation Laws: Methodology

In addition to being familiar with the transport rate equations described in Section 1.2,
the heat transfer analyst must be able to work with the energy conservation
requirements of Equations 1.11 and 1.12. The application of these balances is simpli-
fied if a few basic rules are followed.
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1. The appropriate control volume must be defined, with the control surfaces rep-
resented by a dashed line or lines.

2. The appropriate time basis must be identified.

3. The relevant energy processes must be identified, and each process should be
shown on the control volume by an appropriately labeled arrow.

4. The conservation equation must then be written, and appropriate rate expres-
sions must be substituted for the relevant terms in the equation.

It is important to note that the energy conservation requirement may be applied
to a finite control volume or a differential (infinitesimal) control volume. In the first
case the resulting expression governs overall system behavior. In the second case a
differential equation is obtained that can be solved for conditions at each point in
the system. Differential control volumes are introduced in Chapter 2, and both types
of control volumes are used extensively throughout the text.

1.4

Analysis of Heat Transfer Problems:
Methodology

A major objective of this text is to prepare you to solve engineering problems that
involve heat transfer processes. To this end numerous problems are provided at the
end of each chapter. In working these problems you will gain a deeper appreciation
for the fundamentals of the subject, and you will gain confidence in your ability to
apply these fundamentals to the solution of engineering problems.

In solving problems, we advocate the use of a systematic procedure character-
ized by a prescribed format. We consistently employ this procedure in our exam-
ples, and we require our students to use it in their problem solutions. It consists of
the following steps:

1. Known: After carefully reading the problem, state briefly and concisely what is
known about the problem. Do not repeat the problem statement.

2. Find: State briefly and concisely what must be found.

3. Schematic: Draw a schematic of the physical system. If application of the con-
servation laws is anticipated, represent the required control surface or surfaces
by dashed lines on the schematic. Identify relevant heat transfer processes by
appropriately labeled arrows on the schematic.

4. Assumptions: List all pertinent simplifying assumptions.

5. Properties: Compile property values needed for subsequent calculations and
identify the source from which they are obtained.

6. Analysis: Begin your analysis by applying appropriate conservation laws, and
introduce rate equations as needed. Develop the analysis as completely as pos-
sible before substituting numerical values. Perform the calculations needed to
obtain the desired results.

7. Comments: Discuss your results. Such a discussion may include a summary of
key conclusions, a critique of the original assumptions, and an inference of
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trends obtained by performing additional what-if and parameter sensitivity
calculations.

The importance of following steps 1 through 4 should not be underestimated.
They provide a useful guide to thinking about a problem before effecting its solu-
tion. In step 7 we hope you will take the initiative to gain additional insights by per-
forming calculations that may be computer-based. The software accompanying this
text provides a suitable tool for effecting such calculations.

ExamPLE 1.7

The coating on a plate is cured by exposure to an infrared lamp providing a uniform
irradiation of 2000 W/m?. It absorbs 80% of the irradiation and has an emissivity of
0.50. It is also exposed to an air flow and large surroundings for which temperatures
are 20°C and 30°C, respectively.

1. If the convection coefficient between the plate and the ambient air is
15W/m?- K, what is the cure temperature of the plate?

2. Final characteristics of the coating, including wear and durability, are known to
depend on the temperature at which curing occurs. An air flow system is able to
control the air velocity, and hence the convection coefficient, on the cured sur-
face, but the process engineer needs to know how the temperature depends on
the convection coefficient. Provide the desired information by computing and
plotting the surface temperature as a function of h for 2 <h = 200 W/m? - K.
What value of h would provide a cure temperature of 50°C?

SOLUTION
|

Known: Coating with prescribed radiation properties is cured by irradiation from
an infrared lamp. Heat transfer from the coating is by convection to ambient air and
radiation exchange with the surroundings.

Find:
1. Cure temperature for h = 15 W/m? - K.

2. Effect of air flow on the cure temperature for 2 < h = 200 W/m? - K. Value of
h for which the cure temperature is 50°C.

Schematic:
Teur =30°C
Gjamp = 2000 W/m?2 Aeon Oad @ Gpamp
T.=20°C \ /‘ /
2<h<200Wm>K F 0 > -“l___t___
Ne — = 7 Lo

T Coating,
7 | a=0.8, e=0.
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Assumptions:
1. Steady-state conditions.
2. Negligible heat loss from back surface of plate.

3. Plate is small object in large surroundings, and coating has an absorptivity of
ag, = € = 0.5 with respect to irradiation from the surroundings.

Analysis:

1. Since the process corresponds to steady-state conditions and there is no heat
transfer at the back surface, the plate must be isothermal (T, = T). Hence the
desired temperature may be determined by placing a control surface about the
exposed surface and applying Equation 1.12 or by placing the control surface
about the entire plate and applying Equation 1.11c. Adopting the latter ap-
proach and recognizing that there is no internal energy generation (g, = 0),
Equation 1.11c reduces to

Ein - Eout =0

where Eg = 0 for steady-state conditions. With energy inflow due to absorption
of the lamp irradiation by the coating and outflow due to convection and net
radiation transfer to the surroundings, it follows that

(@G )jamp — Geonv — COrag = O
Substituting from Equations 1.3a and 1.7, we obtain
(@G)igmp = (T = T.) — eo(T4—=Ti) =0

Substituting numerical values
0.8 X 2000 W/m? — 15 W/m? - K(T — 293) K

—0.5X5.67 X108 W/m?-K*(T*—303)K*=0
and solving by trial-and-error, we obtain

T=377K =104°C <

2. Solving the foregoing energy balance for selected values of h in the prescribed
range and plotting the results, we obtain

0 20 40 51 60 80 100
h (W/m?-K)
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If a cure temperature of 50°C is desired, the air flow must provide a convection
coefficient of

h(T = 50°C) = 51.0 W/m? - K <

Comments:

1. The coating (plate) temperature may be reduced by decreasing T.. and Tg,, as
well as by increasing the air velocity and hence the convection coefficient.

2. The relative contributions of convection and radiation to heat transfer from the
plate vary greatly with h. For h =2W/m? - K, T = 204°C and radiation domi-
nates (Qrag = 1232 W/m?, g, = 368 W/m?). Conversely, for h = 200 W/m? - K,
T = 28°C and convection dominates (Qeyny =~ 1606 W/m?, qrg ~ —6 W/m?). In
fact, for this condition the plate temperature is slightly less than that of the sur-
roundings and net radiation exchange is to the plate.

3. This example is one of 15 ready-to-solve models in IHT, which may be ac-
cessed from Examples in the menu bar. As you begin each chapter, check the
corresponding model examples. Each model includes Exercises that test your
understanding of heat transfer concepts.

_

1.5
Relevance of Heat Transfer

We will devote much time to acquiring an understanding of heat transfer effects and
to developing the skills needed to predict heat transfer rates and temperatures that
evolve in certain situations. What is the value of this knowledge, and to what prob-
lems may it be applied? A few examples will serve to illustrate the rich breadth of
applications in which heat transfer plays a critical role.

Heat transfer is a dominant aspect of nearly every energy conversion and pro-
duction device. For example, the efficiency of a gas turbine engine increases with
its operating temperature. Today, the temperatures of the combustion gases inside
these engines far exceed the melting point of the exotic alloys used to manufacture
the turbine blades and vanes. Safe operation is typically achieved by three means.
First, relatively cool gases are injected through small holes at the leading edge of a
turbine blade (Figure 1.10). These gases hug the blade as they are carried down-
stream and help insulate the blade from the hot combustion gases. Second, thin lay-
ers of a very low thermal conductivity, ceramic thermal barrier coating are applied
to the blades and vanes to provide an extra layer of insulation. These coatings are
produced by spraying molten ceramic powders onto the engine components using
extremely high-temperature sources such as plasma spray guns that can operate in
excess of 10,000 kelvins. Third, the blades and vanes are designed with intricate, in-
ternal cooling passages, all carefully configured by the heat transfer engineer to
allow the gas turbine engine to operate under such extreme conditions.

Emerging energy conversion devices such as fuel cells generate power from en-
vironmentally benign fuels such as hydrogen. Major roadblocks hindering wide-
spread adoption of fuel cells are their size, weight, and limited durability. As with
the gas turbine engine, the efficiency of a fuel cell increases with temperature, but
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(a) (b)

F1GURE 1.10  Gas turbine blade. (a) External view showing holes for injection of cooling
gases. (b) X ray view showing internal cooling passages. (Images courtesy of FarField
Technology, Ltd., Christchurch, New Zealand.)

high operating temperatures and large internal temperature gradients can cause the
delicate polymeric materials within the fuel cell to fail. The hydrogen fuel cell is the
type that might eventually be used for automotive applications and is an electro-
chemical reactor that will cease operating if its internal components are contami-
nated with impurities. Water, in both the liquid and vapor phases, exists within
every hydrogen fuel cell, but commonly used substances in internal combustion en-
gines such as antifreeze cannot be utilized in a fuel cell. What are the heat transfer
mechanisms that must be controlled to avoid freezing of pure water within the fuel
cell engine when a vehicle of the future is parked overnight in a cold region? How
might your knowledge of internal forced convection, evaporation, or condensation be
applied to control the operating temperatures and enhance the durability of a fuel cell?

Due to the information technology revolution of the last two decades, strong in-
dustrial productivity growth has brought an improved quality of life worldwide.
Many information technology breakthroughs have been enabled by advances in heat
transfer engineering that have ensured the precise control of temperatures of sys-
tems ranging in size from nanoscale integrated circuits, to microscale storage
media including compact discs, to large data centers filled with heat-generating
equipment. As electronic devices become faster and incorporate greater functional-
ity, they generate more thermal energy. Simultaneously, the devices have become
smaller. Inevitably, heat fluxes (W/m?) and volumetric energy generation rates
(W/m?) keep increasing; but the operating temperatures of the devices must be held
to reasonably low values to ensure their reliability.

For personal computers, cooling fins (also known as heat sinks) are fabricated
of a high thermal conductivity material (usually aluminum) and attached to the mi-
croprocessors to reduce their operating temperatures, as shown in Figure 1.11.
Small fans are used to induce forced convection over the fins. The cumulative en-
ergy that is consumed worldwide, just to (1) power the small fans that provide the
air flow over the fins and (2) manufacture the heat sinks for personal computers, is
estimated to be over 10° kW - h per year [1]. How might your knowledge of con-
duction, convection, and radiation be used to, for example, eliminate the fan and
minimize the size of the heat sink?



34

Chapter 1 m Introduction

o Ficure 1.11
A finned heat sink and fan assembly
Exploded view (left) and microprocessor (right).

Further improvements in microprocessor technology are currently limited by our
ability to cool these tiny devices. Policy makers have voiced concern about our abil-
ity to continually reduce the cost of computing and, in turn as a society, continue the
growth in productivity that has marked the last 25 years, specifically citing the need
to enhance heat transfer in electronics cooling [2]. How might your knowledge of
heat transfer help ensure continued industrial productivity into the future?

Heat transfer is important not only in engineered systems but also in nature.
Temperature regulates and triggers biological responses in all living systems and ul-
timately marks the boundary between sickness and health. Two common examples
include hypothermia, which results from excessive cooling of the human body, and
heat stroke, which is triggered in warm, humid environments. Both are deadly and
are associated with core temperatures of the body exceeding physiological limits.
Both are directly linked to the convection, radiation, and evaporation processes oc-
curring at the surface of the body, the transport of heat within the body, and the
metabolic energy generated volumetrically within the body.

Recent advances in biomedical engineering, such as laser surgery, have been
enabled by successfully applying fundamental heat transfer principles [3,4]. While
increased temperatures resulting from contact with hot objects may cause thermal
burns, beneficial hyperthermal treatments are used to purposely destroy, for exam-
ple, cancerous lesions. In a similar manner, very low temperatures might induce
frostbite, but purposeful localized freezing can selectively destroy diseased tissue
during cryosurgery. Many medical therapies and devices therefore operate by de-
structively heating or cooling diseased tissue, while simultaneously leaving the sur-
rounding healthy tissue unaffected.

The ability to design many medical devices and to develop the appropriate proto-
col for their use hinges on the engineer’s ability to predict and control the distribution
of temperatures during thermal treatment and the distribution of chemical species in
chemotherapies. The treatment of mammalian tissue is made complicated by the mor-
phology of this tissue, as shown in Figure 1.12. The flow of blood within the venular
and capillary structure of a thermally-treated area affects heat transfer through advec-
tion processes. Larger veins and arteries, which commonly exist in pairs throughout
the body, carry blood at different temperatures and advect thermal energy at different
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Keratin ——

Epidermal layer — 3
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FIGURE 1.12  Morphology of human skin.

rates. Therefore, the veins and arteries exist in a counterflow heat exchange arrangement
with warm, arteriolar blood exchanging thermal energy with the cooler, venular blood
through the intervening solid tissue. Networks of smaller capillaries can also affect
local temperatures by perfusing blood through the treated area.

In subsequent chapters, many example and homework problems will deal with
the analysis of these and other thermal systems.

1.6

Units and Dimensions

The physical quantities of heat transfer are specified in terms of dimensions, which are
measured in terms of units. Four basic dimensions are required for the development of
heat transfer; they are length (L), mass (M), time (t), and temperature (T). All other
physical quantities of interest may be related to these four basic dimensions.

In the United States it has been customary to measure dimensions in terms of
an English system of units, for which the base units are

Dimension Unit

Length (L) — foot (ft)

Mass (M) — pound mass (lb,)
Time (t) — second (s)
Temperature (T) — degree Fahrenheit (°F)
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The units required to specify other physical quantities may then be inferred from
this group. For example, the dimension of force is related to mass through Newton’s
second law of motion,

F= gl Ma (1.14)

where the acceleration a has units of feet per square second and g is a proportionality
constant. If this constant is arbitrarily set equal to unity and made dimensionless, the
dimensions of force are (F) = (M) - (L)/(t)? and the unit of force is

1 poundal = 1 Ib,, - ft/s?

Alternatively, one could work with a system of basic dimensions that includes both
mass and force. However, in this case the proportionality constant must have the di-
mensions (M) - (L)/(F)- (t)%. Moreover, if one defines the pound force (Ib;) as a unit
of force that will accelerate one pound mass by 32.17 ft/s?, the proportionality con-
stant must be of the form

g = 32.17 Ib,, - ft/lb; - &2

The units of work may be inferred from its definition as the product of a force
times a distance, in which case the units are ft - Ib;. The units of work and energy
are, of course, equivalent, although it is customary to use the British thermal unit
(Btu) as the unit of thermal energy. One British thermal unit will raise the tempera-
ture of 11b,, of water at 68°F by 1°F. It is equivalent to 778.16 ft-lb;, which is
termed the mechanical equivalent of heat.

In recent years there has been a strong trend toward worldwide usage of a standard
set of units. In 1960 the SI (Systeme International d’Unités) system of units was de-
fined by the Eleventh General Conference on Weights and Measures and recom-
mended as a worldwide standard. In response to this trend, the American Society of
Mechanical Engineers (ASME) has required the use of Sl units in all of its publications
since July 1, 1974. For this reason and because it is operationally more convenient than
the English system, the SI system is used for calculations of this text. However, be-
cause for some time to come, engineers will also have to work with results expressed in
the English system, you should be able to convert from one system to the other. For
your convenience, conversion factors are provided on the inside back cover of the text.

The Sl base units required for this text are summarized in Table 1.2. With regard
to these units note that 1 mol is the amount of substance that has as many atoms or

TABLE 1.2 SI base and supplementary units

Quantity and Symbol Unit and Symbol
Length (L) meter (m)
Mass (M) kilogram (kg)
Concentration (C) mole (mol)
Time (t) second (s)
Electric current (1) ampere (A)
Thermodynamic temperature (T) kelvin (K)
Plane angle® (6) radian (rad)
Solid angle? (w) steradian (sr)

2Supplementary unit.
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TaBLE 1.3 Sl derived units for selected quantities

Name Expression
Quantity and Symbol Formula in SI Base Units
Force newton (N) m-kg/s? m-kg/s?
Pressure and stress pascal (Pa) N/m? kg/m-s?
Energy joule (J) N-m m?2-kg/s?
Power watt (W) Jis m?2-kg/s®

molecules as there are atoms in 12 g of carbon-12 (**C); this is the gram-mole (mol).
Although the mole has been recommended as the unit quantity of matter for the Sl sys-
tem, it is more consistent to work with the kilogram-mol (kmol, kg-mol). One kmol is
simply the amount of substance that has as many atoms or molecules as there are atoms
in 12 kg of *?C. As long as the use is consistent within a given problem, no difficulties
arise in using either mol or kmol. The molecular weight of a substance is the mass as-
sociated with a mole or kilogram-mole. For oxygen, as an example, the molecular
weight Jit is 16 g/mol or 16 kg/kmol.

Although the Sl unit of temperature is the kelvin, use of the Celsius tempera-
ture scale remains widespread. Zero on the Celsius scale (0°C) is equivalent to
273.15 K on the thermodynamic scale,* in which case

T (K) = T(°C) + 273.15

However, temperature differences are equivalent for the two scales and may be de-
noted as °C or K. Also, although the SI unit of time is the second, other units of
time (minute, hour, and day) are so common that their use with the SI system is
generally accepted.

The SI units comprise a coherent form of the metric system. That is, all remain-
ing units may be derived from the base units using formulas that do not involve any
numerical factors. Derived units for selected quantities are listed in Table 1.3. Note
that force is measured in newtons, where a 1-N force will accelerate a 1-kg mass at

TABLE 1.4 Multiplying prefixes

Prefix Abbreviation Multiplier
pico p 10712
nano n 107°
micro n 107
milli m 1073
centi c 1072
hecto h 10?
kilo k 103
mega M 106
giga G 10°
tera T 10'2

The degree symbol is retained for designation of the Celsius temperature (°C) to avoid confusion
with use of C for the unit of electrical charge (coulomb).
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1m/s2. Hence 1N = 1kg - m/s%. The unit of pressure (N/m?) is often referred to as
the pascal. In the SI system there is one unit of energy (thermal, mechanical, or
electrical), called the joule (J), and 1J= 1N-m. The unit for energy rate, or power,
is then J/s, where one joule per second is equivalent to one watt (1J/s = 1 W). Since
it is frequently necessary to work with extremely large or small numbers, a set of
standard prefixes has been introduced to simplify matters (Table 1.4). For example,
1 megawatt (MW) = 10°W, and 1 micrometer (uwm) =10"°m.

Although much of the material of this chapter will be discussed in greater detail,
you should now have a reasonable overview of heat transfer. You should be
aware of the several modes of transfer and their physical origins. Moreover, given
a physical situation, you should be able to perceive the relevant transport phe-
nomena. The importance of developing this facility must not be underestimated.
You will be devoting much time to acquiring the tools needed to calculate heat
transfer phenomena. However, before you can begin to use these tools to solve
practical problems, you must have the intuition to determine what is happening
physically. In short, you must be able to look at a problem and identify the perti-
nent transport phenomena. The example and problems at the end of this chapter
should help you to begin developing this intuition.

You should also appreciate the significance of the rate equations and feel com-
fortable in using them to compute transport rates. These equations, summarized in
Table 1.5, should be committed to memory. You must also recognize the importance
of the conservation laws and the need to carefully identify control volumes. With
the rate equations, the conservation laws may be used to solve numerous heat trans-
fer problems.

Lastly, you should have begun to acquire an appreciation for the terminology and
physical concepts that underpin the subject of heat transfer. Test your understanding

TABLE 1.5 Summary of heat transfer processes

Transport
Equation Property or
Mode Mechanism(s) Rate Equation Number Coefficient
Conduction Diffusion of energy due ay (W/im?) = —k?TT (1.2) k (W/m - K)
to random molecular X
motion
Convection Diffusion of energy due q"(W/m?) =h(T,—T.) (1.33) h (W/m? - K)
to random molecular
motion plus energy
transfer due to bulk
motion (advection)
Radiation Energy transfer by q"(W/m?) = ea(Td — T .7 £
electromagnetic waves or q(W) = h A(T, — Tg,) (1.8) h, (W/m? - K)
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of the important terms and concepts introduced in this chapter by addressing the fol-
lowing questions.

» What are the physical mechanisms associated with heat transfer by conduction,
convection, and radiation?

» What is the driving potential for heat transfer? What are analogs to this poten-
tial and to heat transfer itself for the transport of electric charge?

» What is the difference between a heat flux and a heat rate? What are their units?

» What is a temperature gradient? What are its units? What is the relationship of
heat flow to a temperature gradient?

» What is the thermal conductivity? What are its units? What role does it play in
heat transfer?

» What is Fourier’s law? Can you write the equation from memory?

« If heat transfer by conduction through a medium occurs under steady-state condi-
tions, will the temperature at a particular instant vary with location in the
medium? Will the temperature at a particular location vary with time?

» What is the difference between natural convection and forced convection?

» What conditions are necessary for the development of a hydrodynamic boundary
layer? A thermal boundary layer? What varies across a hydrodynamic boundary
layer? A thermal boundary layer?

« If convection heat transfer for flow of a liquid or a vapor is not characterized by
liquid/vapor phase change, what is the nature of the energy being transferred?
What is it if there is such a phase change?

» What is Newton’s law of cooling? Can you write the equation from memory?

» What role is played by the convection heat transfer coefficient in Newton’s law
of cooling? What are its units?

» What effect does convection heat transfer from or to a surface have on the solid
bounded by the surface?

» What is predicted by the Stefan—Boltzmann law, and what unit of temperature
must be used with the law? Can you write the equation from memory?

» What is the emissivity, and what role does it play in characterizing radiation
transfer at a surface?

» What is irradiation, and what are its units?

» What two outcomes characterize the response of an opaque surface to incident
radiation? Which outcome affects the thermal energy of the medium bounded
by the surface and how? What property characterizes this outcome?

» What conditions are associated with use of the radiation heat transfer coefficient?

 Can you write the equation used to express net radiation exchange between a
small isothermal surface and a large isothermal enclosure?

« Consider the surface of a solid that is at an elevated temperature and exposed
to cooler surroundings. By what mode(s) is heat transferred from the surface if
(1) itis in intimate (perfect) contact with another solid, (2) it is exposed to the
flow of a liquid, (3) it is exposed to the flow of a gas, and (4) it is in an evacu-
ated chamber?

» What is the inherent difference between application of conservation of energy
over a time interval and at an instant of time?

» What is thermal energy storage? How does it differ from thermal energy gen-
eration? What role do the terms play in a surface energy balance?
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ExAmPLE 1.8

A closed

container filled with hot coffee is in a room whose air and walls are at a

fixed temperature. Identify all heat transfer processes that contribute to cooling of the
coffee. Comment on features that would contribute to a superior container design.

SOLUTION

Known:

Qs
Qz:
Qs
Qg
s

Q-
Q7
Os:

_

Hot coffee is separated from its cooler surroundings by a plastic flask,

an air space, and a plastic cover.

Find: Relevant heat transfer processes.

Schematic:

e

> 02 U6
—~— T/
J3 4 47

Hot
coffee

!
\

Air Room
Coffee i
Plastic R L
flask
Cover Cover  syrroundings 1
Air space
Plastic flask

Pathways for energy transfer from the coffee are as follows:

free convection from the coffee to the flask
conduction through the flask

free convection from the flask to the air
free convection from the air to the cover

net radiation exchange between the outer surface of the flask and the inner
surface of the cover

conduction through the cover
free convection from the cover to the room air

net radiation exchange between the outer surface of the cover and the
surroundings

Comments: Design improvements are associated with (1) use of aluminized
(low emissivity) surfaces for the flask and cover to reduce net radiation, and
(2) evacuating the air space or using a filler material to retard free convection.
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Problems
Conduction loss through a window that is 1 m by 3 m on a side?
o o The thermal conductivity of glass is 1.4 W/m * K.
1.1 The thermal conductivity of a sheet of rigid, extruded

insulation is reported to be k = 0.029 W/m - K. The

measured temperature difference across a 20-mm-thick

sheet of the material is T, — T, = 10°C.

(a) What is the heat flux through a 2 m X 2 m sheet of
the insulation?

(b) What is the rate of heat transfer through the sheet
of insulation?

A concrete wall, which has a surface area of 20 m? and

13

14

15

is 0.30 m thick, separates conditioned room air from
ambient air. The temperature of the inner surface of the
wall is maintained at 25°C, and the thermal conductiv-
ity of the concrete is 1 W/m - K.

(a) Determine the heat loss through the wall for outer
surface temperatures ranging from —15°C to 38°C,
which correspond to winter and summer extremes,
respectively. Display your results graphically.

(b) On your graph, also plot the heat loss as a function of
the outer surface temperature for wall materials hav-
ing thermal conductivities of 0.75 and 1.25 W/m - K.
Explain the family of curves you have obtained.

The concrete slab of a basement is 11 m long, 8 m
wide, and 0.20 m thick. During the winter, tempera-
tures are nominally 17°C and 10°C at the top and bot-
tom surfaces, respectively. If the concrete has a thermal
conductivity of 1.4 W/m - K, what is the rate of heat
loss through the slab? If the basement is heated by a gas
furnace operating at an efficiency of n; = 0.90 and nat-
ural gas is priced at C, = $0.01/MJ, what is the daily
cost of the heat loss?

The heat flux through a wood slab 50 mm thick, whose
inner and outer surface temperatures are 40 and 20°C,
respectively, has been determined to be 40 W/m?. What
is the thermal conductivity of the wood?

The inner and outer surface temperatures of a glass
window 5 mm thick are 15 and 5°C. What is the heat

1.6

1.7

18

1.9

1.10

A glass window of width W = 1 m and height H = 2 m
is 5 mm thick and has a thermal conductivity of k; =
1.4 W/m - K. If the inner and outer surface tempera-
tures of the glass are 15°C and —20°C, respectively, on
a cold winter day, what is the rate of heat loss through
the glass? To reduce heat loss through windows, it is
customary to use a double pane construction in which
adjoining panes are separated by an air space. If the
spacing is 10 mm and the glass surfaces in contact with
the air have temperatures of 10°C and —15°C, what is
the rate of heat loss from a 1 m X 2 m window? The
thermal conductivity of air is k, = 0.024 W/m - K.

A freezer compartment consists of a cubical cavity that is
2m on a side. Assume the bottom to be perfectly insu-
lated. What is the minimum thickness of styrofoam insula-
tion (k = 0.030 W/m - K) that must be applied to the top
and side walls to ensure a heat load of less than 500 W,
when the inner and outer surfaces are —10 and 35°C?

An inexpensive food and beverage container is fabricated
from 25-mm-thick polystyrene (k = 0.023 W/m « K) and
has interior dimensions of 0.8 m X 0.6 m X 0.6 m. Under
conditions for which an inner surface temperature of ap-
proximately 2°C is maintained by an ice-water mixture
and an outer surface temperature of 20°C is maintained
by the ambient, what is the heat flux through the container
wall? Assuming negligible heat gain through the 0.8 m X
0.6 m base of the cooler, what is the total heat load for the
prescribed conditions?

What is the thickness required of a masonry wall hav-
ing thermal conductivity 0.75 W/m -« K if the heat rate
is to be 80% of the heat rate through a composite struc-
tural wall having a thermal conductivity of 0.25 W/m -
K and a thickness of 100 mm? Both walls are subjected
to the same surface temperature difference.

The 5-mm-thick bottom of a 200-mm-diameter pan
may be made from aluminum (k = 240 W/m « K) or
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copper (k = 390 W/m - K). When used to boil water, the
surface of the bottom exposed to the water is nominally
at 110°C. If heat is transferred from the stove to the pan
at a rate of 600 W, what is the temperature of the surface
in contact with the stove for each of the two materials?

A square silicon chip (k = 150 W/m - K) is of width
w = 5mm on a side and of thickness t = 1 mm. The
chip is mounted in a substrate such that its side and
back surfaces are insulated, while the front surface is
exposed to a coolant.

—

Coolant )

If 4 W are being dissipated in circuits mounted to the
back surface of the chip, what is the steady-state tem-
perature difference between back and front surfaces?

A gage for measuring heat flux to a surface or through
a laminated material employs five thin-film, chromel/
alumel (type K) thermocouples deposited on the upper
and lower surfaces of a wafer with a thermal conductiv-
ity of 1.4 W/m - K and a thickness of 0.25 mm.

(a) Determine the heat flux q” through the gage when
the voltage output at the copper leads is 350 wV.
The Seebeck coefficient of the type-K thermo-
couple materials is approximately 40 wV/°C.

(b) What precaution should you take in using a gage of
this nature to measure heat flow through the lami-
nated structure shown?

Alumel (B)

o

Chromel (A)

Surface-mounted
gage

Gage bonded
between laminates

Convection

1.13

You’ve experienced convection cooling if you’ve ever
extended your hand out the window of a moving vehi-
cle or into a flowing water stream. With the surface of
your hand at a temperature of 30°C, determine the con-
vection heat flux for (a) a vehicle speed of 35 km/h in
air at —5°C with a convection coefficient of 40 W/m? -
K and (b) a velocity of 0.2 m/s in a water stream at
10°C with a convection coefficient of 900 W/m? - K.
Which condition would feel colder? Contrast these re-
sults with a heat loss of approximately 30 W/m? under
normal room conditions.

Air at 40°C flows over a long, 25-mm-diameter cylinder

1.15

1.16

with an embedded electrical heater. In a series of tests,
measurements were made of the power per unit length,
P’, required to maintain the cylinder surface tempera-
ture at 300°C for different freestream velocities V of the
air. The results are as follows:

Air velocity, V (m/s) 1 2 4 8 12
Power, P’ (W/m) 450 658 983 1507 1963

(a) Determine the convection coefficient for each ve-
locity, and display your results graphically.

(b) Assuming the dependence of the convection coeffi-
cient on the velocity to be of the form h = CV", de-
termine the parameters C and n from the results of

part (a).

An electric resistance heater is embedded in a long
cylinder of diameter 30 mm. When water with a tem-
perature of 25°C and velocity of 1 m/s flows crosswise
over the cylinder, the power per unit length required to
maintain the surface at a uniform temperature of 90°C
is 28 kW/m. When air, also at 25°C, but with a velocity
of 10 m/s is flowing, the power per unit length required
to maintain the same surface temperature is 400 W/m.
Calculate and compare the convection coefficients for
the flows of water and air.

A cartridge electrical heater is shaped as a cylinder of
length L = 200 mm and outer diameter D = 20 mm.
Under normal operating conditions the heater dissipates
2 kW while submerged in a water flow that is at 20°C
and provides a convection heat transfer coefficient of
h = 5000 W/m? - K. Neglecting heat transfer from the
ends of the heater, determine its surface temperature T.
If the water flow is inadvertently terminated while the
heater continues to operate, the heater surface is ex-
posed to air that is also at 20°C but for which h = 50
W/m? - K. What is the corresponding surface tempera-
ture? What are the consequences of such an event?
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A common procedure for measuring the velocity of an air
stream involves insertion of an electrically heated wire
(called a hot-wire anemometer) into the air flow, with the
axis of the wire oriented perpendicular to the flow direc-
tion. The electrical energy dissipated in the wire is as-
sumed to be transferred to the air by forced convection.
Hence, for a prescribed electrical power, the temperature
of the wire depends on the convection coefficient, which,
in turn, depends on the velocity of the air. Consider a wire
of length L = 20 mm and diameter D = 0.5 mm, for
which a calibration of the form, V = 6.25 X 10> h?, has
been determined. The velocity V and the convection coef-
ficient h have units of m/s and W/m? - K, respectively. In
an application involving air at a temperature of T,, =
25°C, the surface temperature of the anemometer is main-
tained at T, = 75°C with a voltage drop of 5V and an
electric current of 0.1 A. What is the velocity of the air?

1.18 A square isothermal chip is of width w = 5mm on a

1.19

side and is mounted in a substrate such that its side and
back surfaces are well insulated, while the front surface
is exposed to the flow of a coolant at T,, = 15°C. From
reliability considerations, the chip temperature must not
exceed T = 85°C.

—ZT.h

Coolant o

If the coolant is air and the corresponding convection
coefficient is h = 200 W/m? - K, what is the maximum
allowable chip power? If the coolant is a dielectric lig-
uid for which h = 3000 W/m? - K, what is the maxi-
mum allowable power?

The case of a power transistor, which is of length L = 10
mm and diameter D = 12 mm, is cooled by an air stream
of temperature T,, = 25°C.

Transistor (T, P

elec)

f«e—D —

Air
T., h
E—

|[e— r—»‘

Under conditions for which the air maintains an aver-
age convection coefficient of h = 100 W/m? - K on the
surface of the case, what is the maximum allowable
power dissipation if the surface temperature is not to
exceed 85°C?

1.20

121

1.22

1.23

43

The use of impinging air jets is proposed as a means of
effectively cooling high-power logic chips in a computer.
However, before the technique can be implemented, the
convection coefficient associated with jet impingement
on a chip surface must be known. Design an experiment
that could be used to determine convection coefficients
associated with air jet impingement on a chip measuring
approximately 10 mm by 10 mm on a side.

The temperature controller for a clothes dryer consists

of a bimetallic switch mounted on an electrical heater

attached to a wall-mounted insulation pad.
e Dryer wall

p, _E ALEA AT e _
WWVWVWVWQ _‘ Insulation pad

Electrical heater

L1, =70C TB

Air imetallic switch

T.,h —
The switch is set to open at 70°C, the maximum dryer air
temperature. In order to operate the dryer at a lower air
temperature, sufficient power is supplied to the heater such
that the switch reaches 70°C (T,) when the air temperature
T is less than T If the convection heat transfer coefficient
between the air and the exposed switch surface of 30 mm?
is 25 W/m? - K, how much heater power P, is required
when the desired dryer air temperature is T, = 50°C?

The free convection heat transfer coefficient on a thin hot
vertical plate suspended in still air can be determined
from observations of the change in plate temperature
with time as it cools. Assuming the plate is isothermal
and radiation exchange with its surroundings is negligi-
ble, evaluate the convection coefficient at the instant of
time when the plate temperature is 225°C and the change
in plate temperature with time (dT/dt) is —0.022 K/s.
The ambient air temperature is 25°C and the plate mea-
sures 0.3 X 0.3 m with a mass of 3.75 kg and a specific
heat of 2770 J/kg - K.

A transmission case measures W = 0.30 m on a side and
receives a power input of P; = 150 hp from the engine.

Transmission case,n, Ty
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I the transmission efficiency is n = 0.93 and air flow over If T, ~ T, in Equation 1.9, the radiation heat transfer

the case corresponds to T,. = 30°C and h = 200 W/m? -
K, what is the surface temperature of the transmission?

Radiation

1.24

1.25

Under conditions for which the same room temperature
is maintained by a heating or cooling system, it is not
uncommon for a person to feel chilled in the winter but
comfortable in the summer. Provide a plausible expla-
nation for this situation (with supporting calculations)
by considering a room whose air temperature is main-
tained at 20°C throughout the year, while the walls of
the room are nominally at 27°C and 14°C in the sum-
mer and winter, respectively. The exposed surface of a
person in the room may be assumed to be at a tempera-
ture of 32°C throughout the year and to have an emis-
sivity of 0.90. The coefficient associated with heat
transfer by natural convection between the person and
the room air is approximately 2 W/m? - K.

A spherical interplanetary probe of 0.5-m diameter con-
tains electronics that dissipate 150 W. If the probe sur-
face has an emissivity of 0.8 and the probe does not re-
ceive radiation from other surfaces, as, for example,
from the sun, what is its surface temperature?

An instrumentation package has a spherical outer sur-

1.27

1.28

face of diameter D = 100 mm and emissivity & = 0.25.
The package is placed in a large space simulation
chamber whose walls are maintained at 77 K. If opera-
tion of the electronic components is restricted to the
temperature range 40 = T =< 85°C, what is the range of
acceptable power dissipation for the package? Display
your results graphically, showing also the effect of vari-
ations in the emissivity by considering values of 0.20
and 0.30.

Consider the conditions of Problem 1.22. However,
now the plate is in a vacuum with a surrounding tem-
perature of 25°C. What is the emissivity of the plate?
What is the rate at which radiation is emitted by the
surface?

An overhead 25-m-long, uninsulated industrial steam
pipe of 100 mm diameter is routed through a building
whose walls and air are at 25°C. Pressurized steam
maintains a pipe surface temperature of 150°C, and the
coefficient associated with natural convection ish = 10
W/m? - K. The surface emissivity is & = 0.8.

(@) What is the rate of heat loss from the steam line?

(b) If the steam is generated in a gas-fired boiler oper-
ating at an efficiency of n; = 0.90 and natural gas is
priced at C, = $0.01 per MJ, what is the annual
cost of heat loss from the line?

coefficient may be approximated as
h,.=4eaT?

where T = (T, + T,,)/2. We wish to assess the validity

of this approximation by comparing values of h, and

h, , for the following conditions. In each case represent

your results graphically and comment on the validity of

the approximation.

(@) Consider a surface of either polished aluminum (& =
0.05) or black paint (¢ = 0.9), whose temperature
may exceed that of the surroundings (T, = 25°C)
by 10 to 100°C. Also compare your results with val-
ues of the coefficient associated with free convection
inair (T, = Tg,), where h (W/m? - K) = 0.98 AT*%,

(b) Consider initial conditions associated with placing a
workpiece at T, =25°C in a large furnace whose
wall temperature may be varied over the range
100 = T, = 1000°C. According to the surface fin-
ish or coating, its emissivity may assume values of
0.05, 0.2, and 0.9. For each emissivity, plot the rela-
tive error, (h, —h, ,)/h;, as a function of the furnace
temperature.

1.30 Consider the conditions of Problem 1.18. With heat

transfer by convection to air, the maximum allowable
chip power is found to be 0.35 W. If consideration is
also given to net heat transfer by radiation from the chip
surface to large surroundings at 15°C, what is the per-
centage increase in the maximum allowable chip power
afforded by this consideration? The chip surface has an
emissivity of 0.9.

1.31 Chips of width L = 15 mm on a side are mounted to a

substrate that is installed in an enclosure whose walls
and air are maintained at a temperature of Ty, = T, =
25°C. The chips have an emissivity of & = 0.60 and a
maximum allowable temperature of T, = 85°C.

Enclosure, T,

@ Substrate
Air
T h \ / Chip (T, €)

J
(@) If heat is rejected from the chips by radiation and
natural convection, what is the maximum operating

N

L

&
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power of each chip? The convection coefficient | = 6A
depends on the chip-to-air temperature difference
and may be approximated as h = C(T, — T.)Y4, .
where C = 4.2 W/m? - K4, Battery 0 Resistor

(b) If a fan is used to maintain air flow through the en- Air
closure and heat transfer is by forced convection, V=24V T, =25C
with h = 250 W/m? - K, what is the maximum op-
erating power?

1.32 A vacuum system, as used in sputtering electrically Lead wire
conducting thin films on microcircuits, is comprised of
a baseplate maintained by an electrical heater at 300 K
and a shroud within the enclosure maintained at 77 K
by a liquid-nitrogen coolant loop. The circular base-
plate, insulated on the lower side, is 0.3 m in diameter
and has an emissivity of 0.25.

(a) Consider the resistor as a system about which a
control surface is placed and Equation 1.11c is
applied. Determine the corresponding values of
Ein(W), Eg(W), Eq(W), and E4(W). If a control
surface is placed about the entire system, what are
the values of E;;, Eg, Eqy, and Ey?

(b) If electrical energy is dissipated uniformly within the

++—— Vacuum resistor, which is a cylinder of diameter D = 60 mm

enclosure and length L = 250 mm, what is the volumetric heat
generation rate, § (W/m?®)?

(c) Neglecting radiation from the resistor, what is the
convection coefficient?

Liquid-nitrogen

filled shroud

1.35 An aluminum plate 4 mm thick is mounted in a horizon-
tal position, and its bottom surface is well insulated. A
- :ﬂ ]:; <« LN, special, thin coating is applied to the top surface such
I L | | that it absorbs 80% of any incident solar radiation, while
thl_l_l_l_l_l_l_l_l_LLLLLLLLLl having an emissivity of 0.25. The density p and specific
Electrical heater heat ¢ of aluminum are known to be 2700 kg/m® and

— Baseplate 900 J/kg * K, respectively.

(a) Consider conditions for which the plate is at a tem-
perature of 25°C and its top surface is suddenly ex-
posed to ambient air at T, = 20°C and to solar radi-
ation that provides an incident flux of 900 W/m?,

(c) To reduce the liquid-nitrogen consumption, it is The convection heat transfer coefficient between the

A 7. i
proposed to bond a thin sheet of aluminum foil surface and the air is h = 20 W/m* - K. What is the

(¢ = 0.09) to the baseplate. Will this have the de- initial rate of change of the plate temperature?
sired effect? (b) What will be the equilibrium temperature of the

plate when steady-state conditions are reached?

m The surface radiative properties depend on the spe-
cific nature of the applied coating. Compute and
plot the steady-state temperature as a function of
the emissivity for 0.05 = & =< 1, with all other con-
ditions remaining as prescribed. Repeat your calcu-
lations for values of ag = 0.5 and 1.0, and plot the
results with those obtained for ag= 0.8. If the in-
tent is to maximize the plate temperature, what is
the most desirable combination of the plate emis-
sivity and its absorptivity to solar radiation?

(a) How much electrical power must be provided to the
baseplate heater?

(b) At what rate must liquid nitrogen be supplied to the
shroud if its heat of vaporization is 125 kJ/kg?

1.33 Consider the transmission case of Problem 1.23, but
now allow for radiation exchange with the ground/
chassis, which may be approximated as large surround-
ings at Ty, = 30°C. If the emissivity of the case is
& = 0.80, what is the surface temperature?

Energy Balance and Multimode Effects

1.34 An electrical resistor is connected to a battery, as
shown schematically. After a brief transient, the resistor
assumes a nearly uniform, steady-state temperature of ~ 1.36 A blood warmer is to be used during the transfusion of
95°C, while the battery and lead wires remain at the blood to a patient. This device is to heat blood taken
ambient temperature of 25°C. Neglect the electrical re- from the blood bank at 10°C to 37°C at a flow rate of
sistance of the lead wires. 200 ml/min. The blood passes through tubing of length
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2 m, with a rectangular cross section 6.4 mm X 1.6 mm.
At what rate must heat be added to the blood to accom-
plish the required temperature increase? If the fluid
originates from a large tank with nearly zero velocity
and flows vertically downward for its 2-m length, esti-
mate the magnitudes of kinetic and potential energy
changes. Assume the blood’s properties are similar to
those of water.

The energy consumption associated with a home water
heater has two components: (i) the energy that must be
supplied to bring the temperature of groundwater to the
heater storage temperature, as it is introduced to replace
hot water that has been used, and (ii) the energy needed
to compensate for heat losses incurred while the water
is stored at the prescribed temperature. In this problem,
we will evaluate the first of these components for a
family of four, whose daily hot water consumption is
approximately 100 gallons. If groundwater is available
at 15°C, what is the annual energy consumption associ-
ated with heating the water to a storage temperature of
55°C? For a unit electrical power cost of $0.08/kW - h,
what is the annual cost associated with supplying
hot water by means of (a) electric resistance heating or
(b) a heat pump having a COP of 3.

Three electric resistance heaters of length L = 250 mm
and diameter D = 25 mm are submerged in a 10 gallon
tank of water, which is initially at 295 K. The water
may be assumed to have a density and specific heat of
p =990 kg/m® and ¢ = 4180 J/kg * K.

(a) If the heaters are activated, each dissipating g, =
500 W, estimate the time required to bring the water
to a temperature of 335 K.

If the natural convection coefficient is given by an
expression of the form h = 370(T, - T)Y3, where T,
and T are temperatures of the heater surface and
water, respectively, what is the temperature of each
heater shortly after activation and just before deac-
tivation? Units of h and (T, — T) are W/m? - K and
K, respectively.

If the heaters are inadvertently activated when the
tank is empty, the natural convection coefficient
associated with heat transfer to the ambient air at
T, = 300 K may be approximated as h = 0.70
(T, — T..)*3. If the temperature of the tank walls is
also 300 K and the emissivity of the heater surface
is ¢ = 0.85, what is the surface temperature of each
heater under steady-state conditions?

(b)

(©

A hair dryer may be idealized as a circular duct through
which a small fan draws ambient air and within which
the air is heated as it flows over a coiled electric resis-
tance wire.

Surroundings, T,

I

Air
T, h
1
Electric resistor Fan
Discharge .
<«— D —-+£\- 4 <— Inlet, ¥, T;
TO' VO AL
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Peec Dryer, Ty, €

(a) If a dryer is designed to operate with an electric
power consumption of P, = 500 W and to heat air
from an ambient temperature of T; = 20°C to a dis-
charge temperature of T, = 45°C, at what volumet-
ric flow rate V should the fan operate? Heat loss
from the casing to the ambient air and the surround-
ings may be neglected. If the duct has a diameter of
D = 70 mm, what is the discharge velocity V, of
the air? The density and specific heat of the air may
be approximated as p = 1.10 kg/m® and ¢, = 1007
JIkg * K, respectively.

Consider a dryer duct length of L = 150 mm and a
surface emissivity of & = 0.8. If the coefficient associ-
ated with heat transfer by natural convection from the
casing to the ambient air is h = 4 W/m?- K and the
temperature of the air and the surroundings is T,, =
Tor = 20°C, confirm that the heat loss from the casing
is, in fact, negligible. The casing may be assumed to
have an average surface temperature of T, = 40°C.

(b)

In one stage of an annealing process, 304 stainless steel
sheet is taken from 300 K to 1250 K as it passes
through an electrically heated oven at a speed of V, =
10 mm/s. The sheet thickness and width are t; = 8 mm
and W, = 2 m, respectively, while the height, width,
and length of the oven are H, = 2 m, W, = 2.4 m, and
L, = 25 m, respectively. The top and four sides of the
oven are exposed to ambient air and large surroundings,
each at 300 K, and the corresponding surface tem-
perature, convection coefficient, and emissivity are
T, =350 K, h =10 W/m?- K, and &, = 0.8. The bottom
surface of the oven is also at 350 K and rests on a 0.5-m
thick concrete pad whose base is at 300 K. Estimate the
required electric power input, P, to the oven.

Air —_
TSLIV Tw,h —_— TS’ 85
i L, i
Petec ] [ Steel sheet
Jeke ]
5o o © & o]ofr %
% T

Concrete pad To
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1.41 Annealing, an important step in semiconductor materi-

als processing, can be accomplished by rapidly heating
the silicon wafer to a high temperature for a short pe-
riod of time. The schematic shows a method involving
use of a hot plate operating at an elevated temperature
Ty The wafer, initially at a temperature of T,,;, is sud-
denly positioned at a gap separation distance L from
the hot plate. The purpose of the analysis is to compare
the heat fluxes by conduction through the gas within the
gap and by radiation exchange between the hot plate
and the cool wafer. The initial time rate of change in
the temperature of the wafer, (dT,/dt);, is also of inter-
est. Approximating the surfaces of the hot plate and the
wafer as blackbodies and assuming their diameter D to
be much larger than the spacing L, the radiative heat
flux may be expressed as o,y = o (T# — T4). The silicon
wafer has a thickness of d = 0.78 mm, a density of
2700 kg/m®, and a specific heat of 875 J/kg - K. The
thermal conductivity of the gas in the gap is 0.0436
W/m - K.

0000004)
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| / Hot plate, T},
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I Positioner motion

(a) For T, =600°C and T,,; = 20°C, calculate the radia-
tive heat flux and the heat flux by conduction across
a gap distance of L = 0.2 mm. Also determine the
value of (dT,,/dt);, resulting from each of the heating
modes.

(b) | For gap distances of 0.2, 0.5, and 1.0 mm, deter-
mine the heat fluxes and temperature-time change
as a function of the hot plate temperature for
300 = T, = 1300°C. Display your results graphi-
cally. Comment on the relative importance of the
two heat transfer modes and the effect of the gap
distance on the heating process. Under what condi-
tions could a wafer be heated to 900°C in less than
10 seconds?

1.42 In the thermal processing of semiconductor materials,

annealing is accomplished by heating a silicon wafer ac-
cording to a temperature-time recipe and then maintain-
ing a fixed elevated temperature for a prescribed period
of time. For the process tool arrangement shown as fol-
lows, the wafer is in an evacuated chamber whose walls
are maintained at 27°C and within which heating lamps
maintain a radiant flux g/ at its upper surface. The wafer
is 0.78 mm thick, has a thermal conductivity of 30
Wim - K, and an emissivity that equals its absorptivity

N Stagnant gas, k

+— Silicon wafer, T,
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to the radiant flux (¢ = oy = 0.65). For g/ = 3.0 X 10°
W/m?, the temperature on its lower surface is measured
by a radiation thermometer and found to have a value of
T, = 997°C.

— Wafer, k, &, o4

l l Heating lamps l lTsur =27°C
gy = 3 x 10° Wim?
f
L=0.78 mm T 997°C

1.43

w, | =

To avoid warping the wafer and inducing slip planes in
the crystal structure, the temperature difference across
the thickness of the wafer must be less than 2°C. Is this
condition being met?

A furnace for processing semiconductor materials is
formed by a silicon carbide chamber that is zone heated
on the top section and cooled on the lower section.
With the elevator in the lowest position, a robot arm in-
serts the silicon wafer on the mounting pins. In a pro-
duction operation, the wafer is rapidly moved toward
the hot zone to achieve the temperature-time history re-
quired for the process recipe. In this position the top
and bottom surfaces of the wafer exchange radiation
with the hot and cool zones, respectively, of the cham-
ber. The zone temperatures are T, = 1500 K and T, =
330 K, and the emissivity and thickness of the wafer
are ¢ = 0.65 and d = 0.78 mm, respectively. With the
ambient gas at T., = 700 K, convection coefficients at
the upper and lower surfaces of the wafer are 8 and
4 W/m? - K, respectively. The silicon wafer has a den-
sity of 2700 kg/m?® and a specific heat of 875 J/kg * K.

COCOHCDHO 000 000

| SiC chamber
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(@) For an initial condition corresponding to a wafer
temperature of T,,; = 300 K and the position of the
wafer shown schematically, determine the corre-
sponding time rate of change of the wafer tempera-
ture, (dT,/dt);.

(b) Determine the steady-state temperature reached by
the wafer if it remains in this position. How signifi-
cant is convection heat transfer for this situation?
Sketch how you would expect the wafer tempera-
ture to vary as a function of vertical distance.

Radioactive wastes are packed in a long, thin-walled
cylindrical container. The wastes generate thermal en-
ergy nonuniformly according to the relation ¢ = (,[1 —
(r/ry)?], where q is the local rate of energy generation
per unit volume, ¢, is a constant, and r, is the radius of
the container. Steady-state conditions are maintained by
submerging the container in a liquid that is at T, and
provides a uniform convection coefficient h.

4=, [1- (r/r)2

Obtain an expression for the total rate at which energy
is generated in a unit length of the container. Use this
result to obtain an expression for the temperature T, of
the container wall.

| 1.45] Consider the conducting rod of Example 1.3 under

steady-state conditions. As suggested in Comment 3,

Canister

temperatures. The governing relation is of the form, h =
CD (T - T,)°%, where C = 121 W -m 7+ K™%,
The emissivity of the bar surface is & = 0.85.

() Recognizing that the electrical resistance per unit
length of the bar is R, = p./A, where A, is its
cross-sectional area, calculate the current-carrying
capacity of a 20-mm-diameter bus bar if its temper-
ature is not to exceed 65°C. Compare the relative
importance of heat transfer by free convection and
radiation exchange.

(b) | To assess the trade-off between current-carrying
capacity, operating temperature, and bar diameter,
for diameters of 10, 20, and 40 mm, plot the bar
temperature T as a function of current for the range
100 = I=5000A. Also plot the ratio of the heat
transfer by convection to the total heat transfer.

1.47 A small sphere of reference-grade iron with a specific

heat of 447 J/kg * K and a mass of 0.515 kg is suddenly
immersed in a water-ice mixture. Fine thermocouple
wires suspend the sphere, and the temperature is ob-
served to change from 15 to 14°C in 6.35 s. The experi-
ment is repeated with a metallic sphere of the same
diameter, but of unknown composition with a mass of
1.263 kg. If the same observed temperature change oc-
curs in 4.59 s, what is the specific heat of the unknown
material?

1.48 A spherical, stainless steel (AISI 302) canister is used

to store reacting chemicals that provide for a uniform
heat flux @i to its inner surface. The canister is suddenly
submerged in a liquid bath of temperature T.<T;,
where T; is the initial temperature of the canister wall.

Reacting chemicals
r,=0.6m

T;=500 K
p = 8055 kg/m®
¢,= 510 Jike:K

T T T.=300K
h = 500 W/m?2K

Bath

the temperature of the rod may be controlled by vary-
ing the speed of air flow over the rod, which, in turn,

1.46

alters the convection heat transfer coefficient. To con-
sider the effect of the convection coefficient, generate
plots of T versus | for values of h = 50, 100, and 250
W/m? - K. Would variations in the surface emissivity
have a significant effect on the rod temperature?

A long bus bar (cylindrical rod used for making electrical
connections) of diameter D is installed in a large conduit
having a surface temperature of 30°C and in which the
ambient air temperature is T,, = 30°C. The electrical re-
sistivity, p.(u€) + m), of the bar material is a function of
temperature, p, = pe, [1 + a(T — T,)], where p,, =
0.0171 uQ-m, T, = 25°C, and « = 0.00396 K™*. The
bar experiences free convection in the ambient air, and
the convection coefficient depends on the bar diameter, as
well as on the difference between the surface and ambient

r=05m

(a) Assuming negligible temperature gradients in the
canister wall and a constant heat flux g7, develop an
equation that governs the variation of the wall tem-
perature with time during the transient process.
What is the initial rate of change of the wall tem-
perature if g/ = 10° W/m??

(b) What is the steady-state temperature of the wall?

mThe convection coefficient depends on the velocity
associated with fluid flow over the canister and
whether or not the wall temperature is large enough
to induce boiling in the liquid. Compute and plot
the steady-state temperature as a function of h for
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the range 100 = h = 10,000 W/m?-K. Is there a
value of h below which operation would be unac-
ceptable?

Liquid oxygen, which has a boiling point of 90 K and a
latent heat of vaporization of 214 kJ/kg, is stored in
a spherical container whose outer surface is of 500-mm
diameter and at a temperature of —10°C. The container
is housed in a laboratory whose air and walls are
at 25°C.

(a) If the surface emissivity is 0.20 and the heat
transfer coefficient associated with free convec-
tion at the outer surface of the container is 10
W/m2-K, what is the rate, in kg/s, at which
oxygen vapor must be vented from the system?

Moisture in the ambient air will result in frost for-
mation on the container, causing the surface emis-
sivity to increase. Assuming the surface tempera-
ture and convection coefficient to remain at —10°C
and 10 W/m?- K, respectively, compute the oxygen
evaporation rate (kg/s) as a function of surface
emissivity over the range 0.2 =< & =< 0.94.

A freezer compartment is covered with a 2-mm-thick
layer of frost at the time it malfunctions. If the compart-
ment is in ambient air at 20°C and a coefficient of h = 2
W/m? - K characterizes heat transfer by natural convec-
tion from the exposed surface of the layer, estimate the
time required to completely melt the frost. The frost
may be assumed to have a mass density of 700 kg/m®
and a latent heat of fusion of 334 kJ/kg.

A vertical slab of Woods metal is joined to a substrate
on one surface and is melted as it is uniformly irradi-
ated by a laser source on the opposite surface. The
metal is initially at its fusion temperature of T; = 72°C,
and the melt runs off by gravity as soon as it is formed.
The absorptivity of the metal to the laser radiation is
a, = 0.4, and its latent heat of fusion is hy = 33 kJ/kg.

(a) Neglecting heat transfer from the irradiated surface
by convection or radiation exchange with the sur-
roundings, determine the instantaneous rate of melt-
ing in kg/s- m? if the laser irradiation is 5kW/m?.
How much material is removed if irradiation is
maintained for a period of 2s?

(b) Allowing for convection to ambient air, with

T.=20°C and h=15 W/m?2-K, and radiation

exchange with large surroundings (e=0.4, Ty, =

20°C), determine the instantaneous rate of melting
during irradiation.

Following the hot vacuum forming of a paper-pulp
mixture, the product, an egg carton, is transported on a
conveyor for 18 s toward the entrance of a gas-fired
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oven where it is dried to a desired final water content. It
is observed that very little water evaporates during the
travel time. So, to increase the productivity of the line,
it is proposed that a bank of infrared radiation heaters,
which provide a uniform radiant flux of 5000 W/m?, be
installed over the conveyor. The carton has an exposed
area of 0.0625 m? and a mass of 0.220 kg, 75% of

which is water after the forming process.
1 Gas-fired
furnace

Bank of infrared radiant heaters
I 1 I 1 I

\%
E Carton
© O
Conveyor
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The chief engineer of your plant will approve the pur-
chase of the heaters if they can reduce the water content
by 10% of the total mass. Would you recommend the
purchase? Assume the heat of vaporization of water is
hyy = 2400 k/kg.

Electronic power devices are mounted to a heat sink
having an exposed surface area of 0.045m? and an
emissivity of 0.80. When the devices dissipate a total
power of 20 W and the air and surroundings are at
27°C, the average sink temperature is 42°C. What
average temperature will the heat sink reach when the
devices dissipate 30 W for the same environmental
condition?

Power device

T, =27°C

Heat sink, T
A, e

Air

T,.=27°C

A computer consists of an array of five printed circuit
boards (PCBs), each dissipating P, = 20 W of power.
Cooling of the electronic components on a board is pro-
vided by the forced flow of air, equally distributed in
passages formed by adjoining boards, and the convec-
tion coefficient associated with heat transfer from the
components to the air is approximately h = 200 W/m? -
K. Air enters the computer console at a temperature of
T, = 20°C, and flow is driven by a fan whose power
consumption is P; = 25 W.
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OQutlet air 9, T,

Fan, Pf
Inlet air v, T

(@) If the temperature rise of the air flow, (T, — T;), is not
to exceed 15°C, what is the minimum allowable volu-
metric flow rate V of the air? The density and specific
heat of the air may be approximated as p = 1.161
kg/m?® and ¢, = 1007 J/kg - K, respectively.

(b) The component that is most susceptible to thermal
failure dissipates 1 W/cm? of surface area. To mini-
mize the potential for thermal failure, where should
the component be installed on a PCB? What is its
surface temperature at this location?

1.55 The roof of a car in a parking lot absorbs a solar radiant

flux of 800 W/m2, while the underside is perfectly insu-
lated. The convection coefficient between the roof and
the ambient air is 12 W/m? - K.

(@) Neglecting radiation exchange with the surroundings,
calculate the temperature of the roof under steady-
state conditions if the ambient air temperature is 20°C.

(b) For the same ambient air temperature, calculate the
temperature of the roof if its surface emissivity is 0.8.

The convection coefficient depends on airflow con-
ditions over the roof, increasing with increasing air
speed. Compute and plot the roof temperature as a
function of h for 2 = h = 200 W/m? - K.

1.56 Consider the conditions of Problem 1.22, but the sur-

roundings temperature is 25°C and radiation exchange
with the surroundings is not negligible. If the convec-
tion coefficient is 6.4 W/m? - K and the emissivity of the
plate is & = 0.42, determine the time rate of change of
the plate temperature, dT/dt, when the plate temperature
is 225°C. Evaluate the heat loss by convection and the
heat loss by radiation.

1.57 Most of the energy we consume as food is converted to

thermal energy in the process of performing all our

1.58

bodily functions and is ultimately lost as heat from our
bodies. Consider a person who consumes 2100 kcal per
day (note that what are commonly referred to as food
calories are actually kilocalories), of which 2000 kcal is
converted to thermal energy. (The remaining 100 kcal
is used to do work on the environment.) The person has
a surface area of 1.8 m? and is dressed in a bathing suit.

(@) The person is in a room at 20°C, with a convection
heat transfer coefficient of 3 W/m? - K. At this air
temperature, the person is not perspiring much. Es-
timate the person’s average skin temperature.

(b) If the temperature of the environment were 33°C,
what rate of perspiration would be needed to main-
tain a comfortable skin temperature of 33°C?

Single fuel cells such as the one of Example 1.4 can be
scaled up by arranging them into a fuel cell stack. A stack
consists of multiple electrolytic membranes that are sand-
wiched between electrically conducting bipolar plates.
Air and hydrogen are fed to each membrane through flow
channels within each bipolar plate, as shown in the
sketch. With this stack arrangement, the individual fuel
cells are connected in series, electrically, producing a
stack voltage of Eg,yc = N X E, where E, is the voltage
produced across each membrane and N is the number of
membranes in the stack. The electrical current is the same
for each membrane. The cell voltage, E,, as well as the
cell efficiency, increases with temperature (the air and hy-
drogen fed to the stack are humidified to allow operation
at temperatures greater than in Example 1.4), but the
membranes will fail at temperatures exceeding T = 85°C.
Consider L X w membranes, where L = w = 100 mm, of
thickness t,, = 0.43 mm that each produce E, = 0.6 volts
atl =60 A, and E;; = 45 W of thermal energy when op-
erating at T = 80°C. The external surfaces of the stack are
exposed to air at T, = 25°C and surroundings at
Tor = 30°C, with & = 0.88 and h = 150 W/m? - K.

stack

stack e
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apgpopop aopqpopop
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(a) Find the electrical power produced by a stack that
is Ly = 200 mm long, for bipolar plate thickness
in the range 1 mm < t,, < 10 mm. Determine the
total thermal energy generated by the stack.
Calculate the surface temperature and explain
whether the stack needs to be internally heated or
cooled to operate at the optimal internal tempera-
ture of 80°C for various bipolar plate thicknesses.
Identify how the internal stack operating tempera-
ture might be lowered or raised for a given bipolar
plate thickness, and discuss design changes that
would promote a more uniform temperature distrib-
ution within the stack. How would changes in the
external air and surroundings temperature affect
your answer? Which membrane in the stack is most
likely to fail due to high operating temperature?

(o

~

(©

1.59 Consider Problem 1.1.

(a) If the exposed cold surface of the insulation is at
T, = 20°C, what is the value of the convection heat
transfer coefficient on the cold side of the insulation
if the surroundings temperature is T, = 320 K, the
ambient temperature is T,. = 5°C, and the emissiv-
ity is & = 0.95? Express your results in units of
W/m? - K and W/m? - °C.

Using the convective heat transfer coefficient you
calculated in part (a), determine the surface tem-
perature, T,, as the emissivity of the surface is var-
ied over the range 0.05 = ¢ = 0.95. The hot wall
temperature of the insulation remains fixed at T, =
30°C. Display your results graphically.

1.60 The wall of an oven used to cure plastic parts is of

thickness L = 0.05 m and is exposed to large surround-
ings and air at its outer surface. The air and the sur-
roundings are at 300 K.

(a) If the temperature of the outer surface is 400 K
and its convection coefficient and emissivity are
h =20 W/m? - K and & = 0.8, respectively, what is
the temperature of the inner surface if the wall has a
thermal conductivity of k = 0.7 W/m « K?

(b) | Consider conditions for which the temperature of
the inner surface is maintained at 600 K, while the
air and large surroundings to which the outer sur-
face is exposed are maintained at 300 K. Explore
the effects of variations in k, h, and & on (i) the
temperature of the outer surface, (ii) the heat flux
through the wall, and (iii) the heat fluxes associated
with convection and radiation heat transfer from
the outer surface. Specifically, compute and plot
the foregoing dependent variables for parametric
variations about baseline conditions of k = 10
W/m - K, h =20 W/m?- K, and & = 0.5. Suggested
ranges of the independent variables are 0.1 = k =
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400 W/m - K, 2=<h=200W/m?-K, and 0.05 <
¢ = 1. Discuss the physical implications of your
results. Under what conditions will the temperature
of the outer surface be less than 45°C, which is a
reasonable upper limit to avoid burn injuries if
contact is made?

An experiment to determine the convection coefficient
associated with airflow over the surface of a thick stain-
less steel casting involves insertion of thermocouples in
the casting at distances of 10 and 20 mm from the sur-
face along a hypothetical line normal to the surface.
The steel has a thermal conductivity of 15 W/m - K. If
the thermocouples measure temperatures of 50 and
40°C in the steel when the air temperature is 100°C,
what is the convection coefficient?

A thin electrical heating element provides a uniform
heat flux g7, to the outer surface of a duct through which
air flows. The duct wall has a thickness of 10 mm and a
thermal conductivity of 20 W/m - K.

Duct

Duct wall
TO
AT TITEEE - Electrical

T 77 heater
Insulation

(a) At a particular location, the air temperature is 30°C
and the convection heat transfer coefficient be-
tween the air and inner surface of the duct is
100 W/m?- K. What heat flux ¢ is required to
maintain the inner surface of the duct at T; = 85°C?

(b) For the conditions of part (a), what is the tempera-
ture (T,) of the duct surface next to the heater?

With T, = 85°C, compute and plot g, and T, as a
function of the air-side convection coefficient h for
the range 10 = h = 200 W/m? - K. Briefly discuss
your results.

A rectangular forced air heating duct is suspended from
the ceiling of a basement whose air and walls are at a
temperature of T,, = T, = 5°C. The duct is 15 m long,
and its cross-section is 350 mm x 200 mm.

(a) For an uninsulated duct whose average surface tem-
perature is 50°C, estimate the rate of heat loss from
the duct. The surface emissivity and convection
coefficient are approximately 0.5 and 4 W/m? - K,
respectively.

(b) If heated air enters the duct at 58°C and a velocity of
4 m/s and the heat loss corresponds to the result of
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part (a), what is the outlet temperature? The density
and specific heat of the air may be assumed to be
p = 1.10 kg/m® and ¢, = 1008 J/kg * K, respectively.

Consider the steam pipe of Example 1.2. The facilities
manager wants you to recommend methods for reduc-
ing the heat loss to the room, and two options are pro-
posed. The first option would restrict air movement
around the outer surface of the pipe and thereby reduce
the convection coefficient by a factor of two. The sec-
ond option would coat the outer surface of the pipe with
a low emissivity (¢ = 0.4) paint.

(@) Which of the foregoing options would you
recommend?

(b) | To prepare for a presentation of your recommenda-
tion to management, generate a graph of the heat
loss q" as a function of the convection coefficient
for2=h =20 W/m?- K and emissivities of 0.2,
0.4, and 0.8. Comment on the relative efficacy of
reducing heat losses associated with convection
and radiation.

During its manufacture, plate glass at 600°C is cooled
by passing air over its surface such that the convection
heat transfer coefficient is h = 5 W/m? - K. To prevent
cracking, it is known that the temperature gradient must
not exceed 15°C/mm at any point in the glass during the
cooling process. If the thermal conductivity of the glass
is 1.4 W/m - K and its surface emissivity is 0.8, what is
the lowest temperature of the air that can initially be
used for the cooling? Assume that the temperature of
the air equals that of the surroundings.

The curing process of Example 1.7 involves exposure
of the plate to irradiation from an infrared lamp and at-
tendant cooling by convection and radiation exchange
with the surroundings. Alternatively, in lieu of the
lamp, heating may be achieved by inserting the plate in
an oven whose walls (the surroundings) are maintained
at an elevated temperature.

(@) Consider conditions for which the oven walls are
at 200°C, air flow over the plate is characterized by
T. = 20°C and h = 15W/m?- K, and the coating
has an emissivity of & = 0.5. What is the tempera-
ture of the plate?

(b) | For ambient air temperatures of 20, 40, and 60°C,
determine the plate temperature as a function of the
oven wall temperature over the range from 150 to
250°C. Plot your results, and identify conditions for
which acceptable curing temperatures between 100
and 110°C may be maintained.

The electrical-substitution radiometer shown schemati-
cally determines the optical (radiant) power of a beam

by measuring the electrical power required to heat the
receiver to the same temperature. With a beam, such as
a laser of optical power Py, incident on the receiver, its
temperature, T, increases above that of the chamber
walls held at a uniform temperature, T, = 77 K. With
the optical beam blocked, the heater on the backside of
the receiver is energized and the electrical power, P,
required to reach the same value of T, is measured. The
purpose of your analysis is to determine the relation-
ship between the electrical and optical power, consider-
ing heat transfer processes experienced by the receiver.

Liquid nitrogen

Chamber walls, T,

Popt

NSNS J <«

; < Laser beam
Heater, Py o, _ -

- <«

<«
Insulation \
Receiver, T

Consider a radiometer with a 15-mm-diameter receiver
having a blackened surface with an emissivity of 0.95
and an absorptivity of 0.98 for the optical beam. When
operating in the optical mode, conduction heat losses
from the backside of the receiver are negligible. In the
electrical mode, the loss amounts to 5% of the electrical
power. What is the optical power of a beam when the
indicated electrical power is 20.64 mW? What is the
corresponding receiver temperature?

1.68 The diameter and surface emissivity of an electrically

heated plate are D = 300 mm and & = 0.80, respectively.

(a) Estimate the power needed to maintain a surface
temperature of 200°C in a room for which the air
and the walls are at 25°C. The coefficient character-
izing heat transfer by natural convection depends on
the surface temperature and, in units of W/m? - K,
may be approximated by an expression of the form
h = 0.80(T, — T.)*°.

Assess the effect of surface temperature on the
power requirement, as well as on the relative con-
tributions of convection and radiation to heat trans-
fer from the surface.

1.69 Bus bars proposed for use in a power transmission station

have a rectangular cross section of height H = 600 mm
and width W = 200 mm. The electrical resistivity,
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pe(n€) + m), of the bar material is a function of tem- and length 4 mm, conduct heat from the case to the circuit
perature, p, = peo[l + (T — T,)], where p,, = 0.0828 board. The gap between the case and the board is 0.2 mm.
wQ-m, T, = 25°C, and & = 0.0040 K™%, The emissivity
of the bar’s painted surface is 0.8, and the temperature of
the surroundings is 30°C. The convection coefficient be-
tween the bar and the ambient air at 30°C is 10 W/m? - K.

(a) Assuming the bar has a uniform temperature T,
calculate the steady-state temperature when a cur-
rent of 60,000 A passes through the bar.

(b) | Compute and plot the steady-state temperature of
the bar as a function of the convection coefficient
for 10 = h = 100 W/m? - K. What minimum con-
vection coefficient is required to maintain a safe-
operating temperature below 120°C? Will increas- (a) Assuming the case is isothermal and neglecting radi-
ing the emissivity significantly affect this result? ation, estimate the case temperature when 150 mW is

dissipated by the transistor and (i) stagnant air or

(i) a conductive paste fills the gap. The thermal con-

ductivities of the wire leads, air, and conductive

paste are 25, 0.0263, and 0.12 W/m - K, respectively.

Transistor
case
Wire
lead

Circuit
board

1.70 A solar flux of 700 W/m? is incident on a flat-plate solar
collector used to heat water. The area of the collector is
3 m?, and 90% of the solar radiation passes through the
cover glass and is absorbed by the absorber plate. The

remaining 10% is reflected away from the collector. Using the conductive paste to fill the gap, we wish
Water flows through the tube passages on the back side to determine the extent to which increased heat dis-
of the absorber plate and is heated from an inlet temper- sipation may be accommodated, subject to the con-
ature T, to an outlet temperature T,. The cover glass, straint that the case temperature not exceed 40°C.
operating at a temperature of 30°C, has an emissivity of Options include increasing the air speed to achieve
0.94 and experiences radiation exchange with the sky at a larger convection coefficient h and/or changing
—10°C. The convection coefficient between the cover the lead wire material to one of larger thermal con-
glass and the ambient air at 25°C is 10 W/m? - K. ductivity. Independently considering leads fabri-
cated from materials with thermal conductivities of
;GS 200 and 400 W/m -« K, compute and plot the maxi-
/ [ Cover glass mum allowable heat dissipation for variations in

/ — h over the range 50 = h = 250 W/m? - K.

; ‘% Air space

Absorber plate Process Identification
Water tubing

1.72 In analyzing the performance of a thermal system, the
engineer must be able to identify the relevant heat
transfer processes. Only then can the system behavior

Insulation

(a) Perform an overall energy balance on the collector be properly quantified. For the following systems identify
to obtain an expression for the rate at which useful the pertinent processes, designating them by appropriately
heat is collected per unit area of the collector, q. labeled arrows on a sketch of the system. Answer addi-
Determine the value of q. tional questions that appear in the problem statement.

(b) Calculate the temperature rise of the water, T, — T, (a) Identify the heat transfer processes that determine
if the flow rate is 0.01 kg/s. Assume the specific the temperature of an asphalt pavement on a sum-
heat of the water to be 4179 J/kg - K. _ mer day. Write an energy balance for the surface of

(c) The collector efficiency 7 is defined as the ratio of the the pavement.

useful heat collected to the rate at which solar energy

is incident on the collector. What is the value of 2 (b) Microwave radiation is known to be transmitted by

plastics, glass, and ceramics, but to be absorbed by

1.71 Consider a surface-mount type transistor on a circuit materials having polar molecules such as water.
board whose temperature is maintained at 35°C. Air at Water molecules exposed to microwave radiation
20°C flows over the upper surface of dimensions 4 mm align and reverse alignment with the microwave ra-
by 8 mm with a convection coefficient of 50 W/m?« K. diation at frequencies up to 10° s, causing heat to

Three wire leads, each of cross section 1 mm by 0.25 mm be generated. Contrast cooking in a microwave
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oven with cooking in a conventional radiant or con-
vection oven. In each case what is the physical
mechanism responsible for heating the food?
Which oven has the greater energy utilization effi-
ciency? Why? Microwave heating is being consid-
ered for drying clothes. How would operation of a
microwave clothes dryer differ from a conventional
dryer? Which is likely to have the greater energy
utilization efficiency and why?

To prevent freezing of the liquid water inside the
fuel cell of an automobile, the water is drained to
an on-board storage tank when the automobile is not
in use. (The water is transferred from the tank back to
the fuel cell when the automobile is turned on.) Con-
sider a fuel cell-powered automobile that is parked
outside on a very cold evening with T,, = —20°C.
The storage tank is initially empty and at T;, = —20°C
when liquid water at atmospheric pressure and tem-
perature T;,, = 50°C is introduced into the tank. The
tank has a wall thickness t; and is blanketed with in-
sulation of thickness t;,,. Identify the heat transfer
processes that will promote freezing of the water.
Will the likelihood of freezing change as the insula-
tion thickness is modified? Will the likelihood of
freezing depend on the tank wall thickness and tank
wall material? Would freezing of the water be more
likely if plastic (low thermal conductivity) or stain-
less steel (moderate thermal conductivity) tubing is
used to transfer the water to and from the tank? Is
there an optimal tank shape that would minimize the
probability of the water freezing? Would freezing be
more likely or less likely to occur if a thin sheet of
aluminum foil (high thermal conductivity, low emis-
sivity) is applied to the outside of the insulation?
To fuvlel cell

Transfer
tubing |

(d) Consider an incandescent light source that consists

©)

of a tungsten filament enclosed in a gas-filled glass
bulb. Assuming steady-state operation with the fila-
ment at a temperature of approximately 2900 K, list
all the pertinent heat transfer processes for (i) the
filament and (ii) the glass bulb.

There is considerable interest in developing building
materials that have improved insulating qualities. The

()

development of such materials would do much to en-
hance energy conservation by reducing space heating
requirements. It has been suggested that superior
structural and insulating qualities could be obtained
by using the composite shown. The material consists
of a honeycomb, with cells of square cross section,
sandwiched between solid slabs. The cells are filled
with air, and the slabs, as well as the honeycomb ma-
trix, are fabricated from plastics of low thermal con-
ductivity. For heat transfer normal to the slabs, iden-
tify all heat transfer processes pertinent to the
performance of the composite. Suggest ways in
which this performance could be enhanced.

Surface
slabs

||

Cellular
air spaces

A thermocouple junction (bead) is used to measure
the temperature of a hot gas stream flowing through
a channel by inserting the junction into the main-
stream of the gas. The surface of the channel is
cooled such that its temperature is well below that
of the gas. Identify the heat transfer processes asso-
ciated with the junction surface. Will the junction
sense a temperature that is less than, equal to, or
greater than the gas temperature? A radiation shield
is a small, open-ended tube that encloses the thermo-
couple junction, yet allows for passage of the gas
through the tube. How does use of such a shield im-
prove the accuracy of the temperature measurement?

]—Cool channel

— Shield
Hot \ —> Thermocouple
gases = —> bead R
B U
(9) A double-glazed, glass fire screen is inserted between

a wood-burning fireplace and the interior of a room.
The screen consists of two vertical glass plates that
are separated by a space through which room air may
flow (the space is open at the top and bottom). Iden-
tify the heat transfer processes associated with the
fire screen.
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1.73 In considering the following problems involving heat
transfer in the natural environment (outdoors), recog-
nize that solar radiation is comprised of long and short
wavelength components. If this radiation is incident on
a semitransparent medium, such as water or glass, two
things will happen to the nonreflected portion of the radi-
ation. The long wavelength component will be absorbed
at the surface of the medium, whereas the short wave-
length component will be transmitted by the surface.

(a) The number of panes in a window can strongly in-
fluence the heat loss from a heated room to the out-
side ambient air. Compare the single- and double-
paned units shown by identifying relevant heat
transfer processes for each case.

A, Double

pane

Ambient
air

(b) In a typical flat-plate solar collector, energy is col-
lected by a working fluid that is circulated through
tubes that are in good contact with the back face of
an absorber plate. The back face is insulated from
the surroundings, and the absorber plate receives
solar radiation on its front face, which is typically
covered by one or more transparent plates. Identify
the relevant heat transfer processes, first for the ab-
sorber plate with no cover plate and then for the
absorber plate with a single cover plate.

(c) The solar energy collector design shown below has
been used for agricultural applications. Air is

(d)

Solar
radiation

Evacuated
tubes

Reflecting
panel

)1
)1

blown through a long duct whose cross section is
in the form of an equilateral triangle. One side of
the triangle is comprised of a double-paned, semi-
transparent cover, while the other two sides are
constructed from aluminum sheets painted flat
black on the inside and covered on the outside with
a layer of styrofoam insulation. During sunny peri-
ods, air entering the system is heated for delivery
to either a greenhouse, grain drying unit, or a stor-
age system.

"y

Double-
paned
cover

- / Styrofoam

Absorber
plates

Identify all heat transfer processes associated with
the cover plates, the absorber plate(s), and the air.

Evacuated-tube solar collectors are capable of im-
proved performance relative to flat-plate collectors.
The design consists of an inner tube enclosed in an
outer tube that is transparent to solar radiation. The
annular space between the tubes is evacuated. The
outer, opaque surface of the inner tube absorbs solar
radiation, and a working fluid is passed through the
tube to collect the solar energy. The collector de-
sign generally consists of a row of such tubes
arranged in front of a reflecting panel. Identify all
heat transfer processes relevant to the performance
of this device.

FE
CleleleleN

)

Evacuated
space

Working
fluid

Transparent
outer tube

Inner
tube
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Chapter 2 m Introduction to Conduction

Recall that conduction refers to the transport of energy in a medium due to a
temperature gradient, and the physical mechanism is one of random atomic or mole-
cular activity. In Chapter 1 we learned that conduction heat transfer is governed by
Fourier’s law and that use of the law to determine the heat flux depends on knowl-
edge of the manner in which temperature varies within the medium (the tempera-
ture distribution). By way of introduction, we restricted our attention to simplified
conditions (one-dimensional, steady-state conduction in a plane wall) for which the
temperature distribution is readily deduced to be linear. However, Fourier’s law is
applicable to transient, multidimensional conduction in complex geometries for which
the nature of the temperature distribution is not evident.

The objectives of this chapter are twofold. First, we wish to develop a deeper
understanding of Fourier’s law. What are its origins? What form does it take for dif-
ferent geometries? How does its proportionality constant (the thermal conductivity)
depend on the physical nature of the medium? Our second objective is to develop,
from basic principles, the general equation, termed the heat equation, which gov-
erns the temperature distribution in a medium. It is the solution to this equation that
provides knowledge of the temperature distribution, which may then be used with
Fourier’s law to determine the heat flux.

The Conduction Rate Equation

Although the conduction rate equation, Fourier’s law, was introduced in Section 1.2,
it is now appropriate to consider its origin. Fourier’s law is phenomenological; that
is, it is developed from observed phenomena rather than being derived from first
principles. Hence, we view the rate equation as a generalization based on much ex-
perimental evidence. For example, consider the steady-state conduction experiment
of Figure 2.1. A cylindrical rod of known material is insulated on its lateral surface,
while its end faces are maintained at different temperatures, with T, > T,. The tem-
perature difference causes conduction heat transfer in the positive x direction. We are
able to measure the heat transfer rate q,, and we seek to determine how g, depends on
the following variables: AT, the temperature difference; Ax, the rod length; and A,
the cross-sectional area.

We might imagine first holding AT and Ax constant and varying A. If we do so,
we find that g, is directly proportional to A. Similarly, holding AT and A constant,
we observe that g, varies inversely with Ax. Finally, holding A and Ax constant, we
find that g, is directly proportional to AT. The collective effect is then

AT
G AR

AT, AT=Ti-Tp T,

-0

\ Ax | FiGuRE 2.1
L—>X Steady-state heat conduction experiment.
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In changing the material (e.g., from a metal to a plastic), we would find that the above
proportionality remains valid. However, we would also find that, for equal values of
A, Ax, and AT, the value of g, would be smaller for the plastic than for the metal.
This suggests that the proportionality may be converted to an equality by introduc-
ing a coefficient that is a measure of the material behavior. Hence, we write

AT
qX_kAAX

where k, the thermal conductivity (W/m - K), is an important property of the mater-
ial. Evaluating this expression in the limit as Ax — 0, we obtain for the heat rate

dT
o= —kA& (2.1)
or for the heat flux
v _O_ _,dT
== K (2.2)

Recall that the minus sign is necessary because heat is always transferred in the di-
rection of decreasing temperature.

Fourier’s law, as written in Equation 2.2, implies that the heat flux is a direc-
tional quantity. In particular, the direction of gy is normal to the cross-sectional area
A. Or, more generally, the direction of heat flow will always be normal to a surface
of constant temperature, called an isothermal surface. Figure 2.2 illustrates the di-
rection of heat flow g in a plane wall for which the temperature gradient dT/dx is
negative. From Equation 2.2, it follows that gy is positive. Note that the isothermal
surfaces are planes normal to the x direction.

Recognizing that the heat flux is a vector quantity, we can write a more general
statement of the conduction rate equation (Fourier’s law) as follows:

ax 1oy

where V is the three-dimensional del operator and T(X, Yy, z) is the scalar tempera-
ture field. It is implicit in Equation 2.3 that the heat flux vector is in a direction
perpendicular to the isothermal surfaces. An alternative form of Fourier’s law is
therefore
" __ ﬂ
dn =~k (2.4)
where g is the heat flux in a direction n, which is normal to an isotherm, as shown
for the two-dimensional case in Figure 2.3. The heat transfer is sustained by a tem-
perature gradient along n. Note also that the heat flux vector can be resolved into
components such that, in Cartesian coordinates, the general expression for q” is

q" =iqy + joy + kg; (2.5)
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where, from Equation 2.3, it follows that

(2.6)

n__ﬂ //z_ﬂ //=_ﬂ
qx_ k&X Qy k z k(?Z

ay

Each of these expressions relates the heat flux across a surface to the temperature gradi-
ent in a direction perpendicular to the surface. It is also implicit in Equation 2.3 that the
medium in which the conduction occurs is isotropic. For such a medium the value of the
thermal conductivity is independent of the coordinate direction.

Fourier’s law is the cornerstone of conduction heat transfer, and its key features
are summarized as follows. It is not an expression that may be derived from first
principles; it is instead a generalization based on experimental evidence. It is an ex-
pression that defines an important material property, the thermal conductivity. In ad-
dition, Fourier’s law is a vector expression indicating that the heat flux is normal to
an isotherm and in the direction of decreasing temperature. Finally, note that
Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas).

The Thermal Properties of Matter

To use Fourier’s law, the thermal conductivity of the material must be known. This
property, which is referred to as a transport property, provides an indication of the
rate at which energy is transferred by the diffusion process. It depends on the physical
structure of matter, atomic and molecular, which is related to the state of the matter. In
this section we consider various forms of matter, identifying important aspects of their
behavior and presenting typical property values.

2.2.1 Thermal Conductivity

From Fourier’s law, Equation 2.6, the thermal conductivity associated with conduc-
tion in the x-direction is defined as
.
X (dTIox)
Similar definitions are associated with thermal conductivities in the y- and
z-directions (k,, k), but for an isotropic material the thermal conductivity is inde-
pendent of the direction of transfer, k, = k, =k, =k.

From the foregoing equation, it follows that, for a prescribed temperature gra-
dient, the conduction heat flux increases with increasing thermal conductivity. In
general, the thermal conductivity of a solid is larger than that of a liquid, which is
larger than that of a gas. As illustrated in Figure 2.4, the thermal conductivity of a
solid may be more than four orders of magnitude larger than that of a gas. This
trend is due largely to differences in intermolecular spacing for the two states.

The Solid State In the modern view of materials, a solid may be comprised of
free electrons and atoms bound in a periodic arrangement called the lattice.
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Ficure 2.4 Range of thermal conductivity for various states of matter at normal
temperatures and pressure.

Accordingly, transport of thermal energy may be due to two effects: the migration
of free electrons and lattice vibrational waves. When viewed as a particle-like phe-
nomenon, the lattice vibration quanta are termed phonons. In pure metals, the elec-
tron contribution to conduction heat transfer dominates, while in nonconductors and
semiconductors, the phonon contribution is dominant.

Kinetic theory yields the following expression for the thermal conductivity [1]:

k=2 CCAmgp @.7)

For conducting materials such as metals, C = C, is the electron specific heat per
unit volume, € is the mean electron velocity, and A, = A, is the electron mean free
path, which is defined as the average distance traveled by an electron before it col-
lides with either an imperfection in the material or with a phonon. In nonconducting
solids, C = C,, is the phonon specific heat, C is the average speed of sound, and A ¢, =
Apn Is the phonon mean free path, which again is determined by collisions with im-
perfections or other phonons. In all cases, the thermal conductivity increases as the
mean free path of the energy carriers (electrons or phonons) is increased.

When electrons and phonons carry thermal energy leading to conduction heat
transfer in a solid, the thermal conductivity may be expressed as

K = Ke+ Ky (2.8)

To a first approximation, k, is inversely proportional to the electrical resistivity, pe.
For pure metals, which are of low p,, k. is much larger than k.. In contrast, for alloys,
which are of substantially larger p,, the contribution of k;, to k is no longer negligi-
ble. For nonmetallic solids, k is determined primarily by k;,, which increases as the
frequency of interactions between the atoms and the lattice decreases. The regular-
ity of the lattice arrangement has an important effect on k;,, with crystalline (well-
ordered) materials like quartz having a higher thermal conductivity than amorphous
materials like glass. In fact, for crystalline, nonmetallic solids such as diamond and
beryllium oxide, ky, can be quite large, exceeding values of k associated with good
conductors, such as aluminum.
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FIGURE 2.5 The temperature dependence of the thermal conductivity of selected solids.

The temperature dependence of k is shown in Figure 2.5 for representative
metallic and nonmetallic solids. Values for selected materials of technical impor-
tance are also provided in Table A.1 (metallic solids) and Tables A.2 and A.3 (non-
metallic solids). More detailed treatments of thermal conductivity are available in
the literature [2].

The Solid State: Micro- and Nanoscale Effects In the preceding discus-
sion, the bulk thermal conductivity is described, and the thermal conductivity values
listed in Tables A.1 through A.3 are appropriate for use when the physical dimen-
sions of the material of interest are relatively large. This is the case in many com-
monplace engineering problems. However, in several areas of technology, such as
microelectronics, the material’s characteristic dimensions can be on the order of
micrometers or nanometers, in which case care must be taken to account for the
possible modifications of k that can occur as the physical dimensions become small.

Cross sections of films of the same material having thicknesses L, and L, are
shown in Figure 2.6. Electrons or phonons that are associated with conduction of
thermal energy are also shown qualitatively. Note that the physical boundaries of
the film act to scatter the energy carriers and redirect their propagation. For large
L/Ams, (Figure 2.6a), the effect of the boundaries on reducing the average energy
carrier path length is minor, and conduction heat transfer occurs as described for
bulk materials. However, as the film becomes thinner, the physical boundaries of
the material can decrease the average net distance traveled by the energy carriers, as
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FIGURE 2.6  Electron or phonon trajectories in (a) a relatively thick film and (b) a relatively
thin film with boundary effects.

shown in Figure 2.6b. Moreover, electrons and phonons moving in the thin y-direction
(representing conduction in the y-direction) are affected by the boundaries to a more
significant degree than energy carriers moving in the x-direction. As such, for films
characterized by small L/A g, we find that k, < k, <k, where k is the bulk thermal
conductivity of the film material.

For L/A g, = 1, predicted values of k, and k, may be estimated to within 20%
from the following expression [1]:

Kylk = 1—2A o/ (377L) (2.9a)
Ky/k = 1=Ap/(3L) (2.9b)

Equations 2.9a, b reveal that the values of k, and k, are within approximately 5% of
the bulk thermal conductivity if L/A g, > 7 (for k) and L/A ¢, > 4.5 (for k,). Values
of the mean free path as well as critical film thicknesses below which microscale ef-
fects must be considered, L, are included in Table 2.1 for several materials at
T =~ 300 K. For films with A, < L < Lggi, k¢ and k, are reduced from the bulk
value as indicated in Equations 2.9a, b. No general guidelines exist for predicting
values of the thermal conductivities for L/A, < 1. Note that, in solids, the value of
Amfp decreases as the temperature increases.

In addition to scattering from physical boundaries, as in the case of Figure 2.6b,
energy carriers may be redirected by chemical dopants embedded within a material
or by grain boundaries that separate individual clusters of material in otherwise
homogeneous matter. Nanostructured materials are chemically identical to their
conventional counterparts but are thermally processed to provide very small grain
sizes in the final material and, from the heat transfer perspective, significantly
increase the scattering and reflection of energy carriers at the grain boundaries.

TABLE 2.1 Mean free path and critical film thickness for
various materials at T' = 300 K [3,4]

Material Amtp (NM) Lerity (NM) Leritx (NM)
Aluminum oxide 5.08 36 22
Diamond (l1a) 315 2200 1400
Gallium arsenide 23 160 100
Gold 31 220 140
Silicon 43 290 180
Silicon dioxide 0.6 4 3

Yttria-stabilized zirconia 25 170 110
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Measured values of the thermal conductivity of a bulk, nanostructured yttria-
stabilized zirconia material are shown in Figure 2.7. This particular ceramic is
widely used for insulation purposes in high-temperature combustion devices such as
gas turbine engines. Conduction is dominated by phonon transfer, and the mean free
path of the phonon energy carriers is, from Table 2.1, A, = 25 nm at 300 K. As
the grain sizes are reduced to characteristic dimensions less than 25 nm (and more
grain boundaries are introduced in the material per unit volume), significant reduc-
tion of the thermal conductivity occurs. Extrapolation of the results of Figure 2.7 to
higher temperatures is not recommended, since the mean free path decreases with
increasing temperature (A, = 4 nm at T =~ 1525 K) and grains of the material may
coalesce, merge, and enlarge at elevated temperatures. Therefore, L/A g, becomes
larger at high temperatures, and reduction of k due to nanoscale effects becomes
less pronounced.

The Fluid State The fluid state includes both liquids and gases. Since the inter-
molecular spacing is much larger and the motion of the molecules is more random
for the fluid state than for the solid state, thermal energy transport is less effective.
The thermal conductivity of gases and liquids is therefore generally smaller than
that of solids.

The effect of temperature, pressure, and chemical species on the thermal con-
ductivity of a gas may be explained in terms of the kinetic theory of gases [5]. From
this theory it is known that the thermal conductivity is directly proportional to the
density of the gas, the mean molecular speed ¢, and the mean free path A, which
is the average distance traveled by an energy carrier (a molecule) before experienc-
ing a collision.

1.
k= 36 PC Ao (2.10)

Because C increases with increasing temperature and decreasing molecular weight, the
thermal conductivity of a gas increases with increasing temperature and decreasing
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FiGURE 2.8  The temperature dependence of the thermal conductivity of selected gases at
normal pressures. Molecular weights (L) of the gases are also shown.

molecular weight. These trends are shown in Figure 2.8. However, because p and
Amsp are directly and inversely proportional to the gas pressure, respectively, the
thermal conductivity is independent of pressure except in extreme cases as, for ex-
ample, when conditions approach that of a perfect vacuum. Therefore, the assump-
tion that k is independent of gas pressure for large volumes of gas is appropriate for
the pressures of interest in this text. Accordingly, although the values of k presented
in Table A.4 pertain to atmospheric pressure or the saturation pressure corresponding
to the prescribed temperature, they may be used over a much wider pressure range.

Molecular conditions associated with the liquid state are more difficult to de-
scribe, and physical mechanisms for explaining the thermal conductivity are not
well understood [6]. The thermal conductivity of nonmetallic liquids generally de-
creases with increasing temperature. As shown in Figure 2.9, water, glycerine, and
engine oil are notable exceptions. The thermal conductivity of liquids is usually in-
sensitive to pressure except near the critical point. Also, it is generally true that ther-
mal conductivity decreases with increasing molecular weight. Values of the thermal
conductivity are often tabulated as a function of temperature for the saturated state
of the liquid. Tables A.5 and A.6 present such data for several common liquids.

Liquid metals are commonly used in high heat flux applications, such as occur in
nuclear power plants. The thermal conductivity of such liquids is given in Table A.7.
Note that the values are much larger than those of the nonmetallic liquids [7].

The Fluid State: Micro- and Nanoscale Effects As in the solid state, the
bulk thermal conductivity may be modified as the characteristic dimensions of the
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FIGURE 2.9 The temperature dependence of the thermal conductivity of selected
nonmetallic liquids under saturated conditions.

system become small, in particular for small values of L/A,. As for the situation
shown in Figure 2.6b, the mean free path of the molecules becomes restricted when
the fluid is, for example, contained in an enclosure of small physical dimension.

Insulation Systems Thermal insulations consist of low thermal conductivity ma-
terials combined to achieve an even lower system thermal conductivity. In conven-
tional fiber-, powder-, and flake-type insulations, the solid material is finely dispersed
throughout an air space. Such systems are characterized by an effective thermal con-
ductivity, which depends on the thermal conductivity and surface radiative properties
of the solid material, as well as the nature and volumetric fraction of the air or void
space. A special parameter of the system is its bulk density (solid mass/total volume),
which depends strongly on the manner in which the material is packed.

If small voids or hollow spaces are formed by bonding or fusing portions of the
solid material, a rigid matrix is created. When these spaces are sealed from each
other, the system is referred to as a cellular insulation. Examples of such rigid insula-
tions are foamed systems, particularly those made from plastic and glass materials. Re-
flective insulations are composed of multilayered, parallel, thin sheets or foils of high
reflectivity, which are spaced to reflect radiant energy back to its source. The spacing
between the foils is designed to restrict the motion of air, and in high-performance
insulations, the space is evacuated. In all types of insulation, evacuation of the air in
the void space will reduce the effective thermal conductivity of the system.

It is important to recognize that heat transfer through any of these insulation sys-
tems may include several modes: conduction through the solid materials; conduction



2.2 m The Thermal Properties of Matter 67

0.014

0.012

0.01

0.008

0.006

0.004

0.002

Effective thermal conductivity (W/m-K)

103 102 101! 100
Pressure (atm)

FIGURE 2.10 Measured thermal conductivity of carbon-doped silica aerogel as a function of
pressure at 7' = 300 K [10].

or convection through the air in the void spaces; and radiation exchange between the
surfaces of the solid matrix. The effective thermal conductivity accounts for all of
these processes, and values for selected insulation systems are summarized in Table
A.3. Additional background information and data are available in the literature [8, 9].

As with thin films, micro- and nanoscale effects can influence the effective
thermal conductivity of insulating materials. The value of k for a nanostructured
silica aerogel material that is composed of approximately 5% by volume solid mate-
rial and 95% by volume air that is trapped within pores of L = 20 nm is shown in
Figure 2.10. Note that at T = 300 K, the mean free path for air at atmospheric pres-
sure is approximately 80 nm. As the gas pressure is reduced, A ¢, would increase for
an unconfined gas, but the molecular motion of the trapped air is restricted by the
walls of the small pores and k is reduced to extremely small values relative to the
thermal conductivities of conventional matter reported in Figure 2.4.

2.2.2 Other Relevant Properties

In our analysis of heat transfer problems, it will be necessary to use several properties
of matter. These properties are generally referred to as thermophysical properties and
include two distinct categories, transport and thermodynamic properties. The transport
properties include the diffusion rate coefficients such as k, the thermal conductivity
(for heat transfer), and v, the kinematic viscosity (for momentum transfer). Thermo-
dynamic properties, on the other hand, pertain to the equilibrium state of a system.
Density (p) and specific heat (c,) are two such properties used extensively in thermo-
dynamic analysis. The product pc, (I/m® - K), commonly termed the volumetric heat
capacity, measures the ability of a material to store thermal energy. Because sub-
stances of large density are typically characterized by small specific heats, many
solids and liquids, which are very good energy storage media, have comparable heat ca-
pacities (pc, > 1 MJ/m?® - K). Because of their very small densities, however, gases are
poorly suited for thermal energy storage (pc, =~ 1 kJ/m? - K). Densities and specific heats
are provided in the tables of Appendix A for a wide range of solids, liquids, and gases.
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In heat transfer analysis, the ratio of the thermal conductivity to the heat capac-
ity is an important property termed the thermal diffusivity «, which has units of m?/s:

-k

PCp
It measures the ability of a material to conduct thermal energy relative to its ability
to store thermal energy. Materials of large « will respond quickly to changes in their
thermal environment, while materials of small « will respond more sluggishly, tak-
ing longer to reach a new equilibrium condition.

The accuracy of engineering calculations depends on the accuracy with which
the thermophysical properties are known [11-13]. Numerous examples could be
cited of flaws in equipment and process design or failure to meet performance spec-
ifications that were attributable to misinformation associated with the selection of
key property values used in the initial system analysis. Selection of reliable property
data is an integral part of any careful engineering analysis. The casual use of data
that have not been well characterized or evaluated, as may be found in some litera-
ture or handbooks, is to be avoided. Recommended data values for many thermo-
physical properties can be obtained from Reference 14. This reference, available in
most institutional libraries, was prepared by the Thermophysical Properties Research
Center (TPRC) at Purdue University.

a

ExXAMPLE 2.1

The thermal diffusivity « is the controlling transport property for transient conduc-
tion. Using appropriate values of k, p, and ¢, from Appendix A, calculate « for the
following materials at the prescribed temperatures: pure aluminum, 300 and 700 K;
silicon carbide, 1000 K; paraffin, 300 K.

SOLUTION

Known: Definition of the thermal diffusivity a.
Find: Numerical values of « for selected materials and temperatures.
Properties: Table A.1, pure aluminum (300 K):

p = 2702 kg/m?

c,=903J/kg-K pa= LC _ 2373W/m K
k =237 W/m - K PC 2702 kg/m® X 903 J/kg - K
=97.1 X 10%m%s 4

Table A.1, pure aluminum (700 K):

p = 2702 kg/m® at 300 K
¢, = 1090 J/kg-K at 700 K (by linear interpolation)

k =225W/m-K at 700 K (by linear interpolation)
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Hence

-k _ 225 Wim - K
PC 2702 kg/m? X 1090 J/kg - K

=76 X 10"°m?/s <

(0%

Table A.2, silicon carbide (1000 K):

p =3160kg/m®  at300K .
C,=1195J/kg K at1000K ta = 87 Wim - K
k =87W/m-K at 1000 K 3160 kg/m® X 1195 J/kg - K
=23 X 10"%m?%s <
Table A.3, paraffin (300 K):
p =900 kg/m? .
c,=2890Jkg K ta= ko 0.24 W/m - K

< _
C —o2awim-K | P% 900kg/m® x 2890 J/kg - K

=09.2 X 10" ¥m?s <

Comments:

1. Note temperature dependence of the thermophysical properties of aluminum and
silicon carbide. For example, for silicon carbide, «(1000 K) = 0.1 X «(300 K);
hence properties of this material have a strong temperature dependence.

2. The physical interpretation of « is that it provides a measure of heat transport
(k) relative to energy storage (pc,). In general, metallic solids have higher a,
while nonmetallics (e.g., paraffin) have lower values of «.

3. Linear interpolation of property values is generally acceptable for engineering
calculations.

4. Use of the low-temperature (300 K) density at higher temperatures ignores ther-
mal expansion effects but is also acceptable for engineering calculations.

5. The IHT software provides a library of thermophysical properties for selected
solids, liquids, and gases that can be accessed from the toolbar button, Proper-

ties. The properties are expressed as intrinsic functions, as shown for the ther-
mal conductivity of atmospheric air,

k =k T(“Air",T) /[Thermal conductivity, W/m - K

and are based on values tabulated in Appendix A, with temperatures in kelvin
units. You can create your own functions to represent property values or other
input data by using the User-Defined Function feature in IHT, as described in
the Help section.
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The Heat Diffusion Equation

A major objective in a conduction analysis is to determine the temperature field in a
medium resulting from conditions imposed on its boundaries. That is, we wish to
know the temperature distribution, which represents how temperature varies with
position in the medium. Once this distribution is known, the conduction heat flux at
any point in the medium or on its surface may be computed from Fourier’s law. Other
important quantities of interest may also be determined. For a solid, knowledge of the
temperature distribution could be used to ascertain structural integrity through deter-
mination of thermal stresses, expansions, and deflections. The temperature distribu-
tion could also be used to optimize the thickness of an insulating material or to deter-
mine the compatibility of special coatings or adhesives used with the material.

We now consider the manner in which the temperature distribution can be de-
termined. The approach follows the methodology described in Section 1.3.3 of ap-
plying the energy conservation requirement. In this case, we define a differential
control volume, identify the relevant energy transfer processes, and introduce the
appropriate rate equations. The result is a differential equation whose solution, for
prescribed boundary conditions, provides the temperature distribution in the
medium.

Consider a homogeneous medium within which there is no bulk motion (advec-
tion) and the temperature distribution T(x, y, z) is expressed in Cartesian coordinates.
Following the methodology of applying conservation of energy (Section 1.3.3), we
first define an infinitesimally small (differential) control volume, dx-dy-dz, as
shown in Figure 2.11. Choosing to formulate the first law at an instant of time, the
second step is to consider the energy processes that are relevant to this control vol-
ume. If there are temperature gradients, conduction heat transfer will occur across

T(X,y, 2) Q212
qy +dy
=
- 0 ATTTTTTTTTT 2
- 1 // q
\1p= 7
u\___/ // /, 1
———————— * I
1 1
I  dz
g 1 1
Eqg I 1
Est : 1 Ox + dx
1 I
________ L)
] ’
PO
I
I 1,/ /
______ 1 o _‘y dy
‘ 1
a;

Ficure 2.11 Differential control volume, dx dy dz, for conduction analysis in Cartesian
coordinates.
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each of the control surfaces. The conduction heat rates perpendicular to each of the
control surfaces at the x, y, and z coordinate locations are indicated by the terms g,
a,, and q,, respectively. The conduction heat rates at the opposite surfaces can then
be expressed as a Taylor series expansion where, neglecting higher order terms,

d0y

Ox+ax = Ox + idx (2.11&)
ddy

qy+dy = qy y dy (211b)
qz

Oz+d: = 0 + = dZ (2110)

In words, Equation 2.11a simply states that the x component of the heat transfer rate
at x + dx is equal to the value of this component at x plus the amount by which it
changes with respect to x times dx.

Within the medium there may also be an energy source term associated with
the rate of thermal energy generation. This term is represented as

E, = g dxdy dz (2.12)

where q is the rate at which energy is generated per unit volume of the medium
(W/m?3). In addition, there may occur changes in the amount of the internal thermal
energy stored by the material in the control volume. If the material is not experienc-
ing a change in phase, latent energy effects are not pertinent, and the energy storage
term may be expressed as

Eq=pC, m T dx dy dz (2.13)

where pc, dT/dt is the time rate of change of the sensible (thermal) energy of the
medium per unit volume. . .

Once again it is important to note that the terms E and Eg; represent different
physical processes. The energy generation term E, is a manifestation of some en-
ergy conversion process involving thermal energy on one hand and some other form
of energy, such as chemical, electrical, or nuclear, on the other. The term is positive
(a source) if thermal energy is being generated in the material at the expense of
some other energy form; it is negative (a sink) if thermal energy is being consumed.
In contrast, the energy storage term Eg refers to the rate of change of thermal en-
ergy stored by the matter.

The last step in the methodology outlined in Section 1.3.3 is to express conser-
vation of energy using the foregoing rate equations. On a rate basis, the general
form of the conservation of energy requirement is

Ein + Ey — Eou = Eq (1.11c)

Hence, recognizing that the conduction rates constitute the energy inflow, Ein: and
outflow, E,;, and substituting Equations 2.12 and 2.13, we obtain

Ox t ay +0,+ q dx dy dz — Ox+ax — qy+dy — Ograz = PCp ot dX dy dz (214)
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Substituting from Equations 2.11, it follows that

aqx qY
_* d — d —_
ay y

qz —, dz+qdxdydz = pcp e T ix dy dz (2.15)

The conduction heat rates may be evaluated from Fourier’s law,

= —kdy dz;‘% (2.16a)
g, = —kdx dz% (2.16b)
g, = —kdx dy% (2.16¢)

where each heat flux component of Equation 2.6 has been multiplied by the appro-
priate control surface (differential) area to obtain the heat transfer rate. Substituting
Equations 2.16 into Equation 2.15 and dividing out the dimensions of the control
volume (dx dy dz), we obtain

ot o1 oT aT
ax (k ax) "y (k ay) T (k az) A= 0G5t (2.17)

Equation 2.17 is the general form, in Cartesian coordinates, of the heat diffu-
sion equation. This equation, often referred to as the heat equation, provides the
basic tool for heat conduction analysis. From its solution, we can obtain the tem-
perature distribution T(x, y, z) as a function of time. The apparent complexity of
this expression should not obscure the fact that it describes an important physical
condition, that is, conservation of energy. You should have a clear understanding
of the physical significance of each term appearing in the equation. For example,
the term d(koT/9x)/ox is related to the net conduction heat flux into the control vol-
ume for the x-coordinate direction. That is, multiplying by dx,

(9 (9T " ”
X <kz9)(> dX = Oy = Oxsax (2.18)

with similar expressions applying for the fluxes in the y and z directions. In words,
the heat equation, Equation 2.17, therefore states that at any point in the medium the
net rate of energy transfer by conduction into a unit volume plus the volumetric rate
of thermal energy generation must equal the rate of change of thermal energy stored
within the volume.

It is often possible to work with simplified versions of Equation 2.17. For ex-
ample, if the thermal conductivity is constant, the heat equation is

T | T aZT q_147T

where a = k/pc, is the thermal diffusivity. Additional simplifications of the general
form of the heat equation are often possible. For example, under steady-state
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conditions, there can be no change in the amount of energy storage; hence Equation
2.17 reduces to

A oT\, d(,aT\, 3 (,dT\, ~_
ax<kax>+ay<kay>+az<kaz>+q‘0 (2.20)

Moreover, if the heat transfer is one-dimensional (e.g., in the x direction) and there
is no energy generation, Equation 2.20 reduces to

d(,dT)_
dx(kdx> =0 (2.21)

The important implication of this result is that under steady-state, one-dimensional
conditions with no energy generation, the heat flux is a constant in the direction of
transfer (dg/dx = 0).

The heat equation may also be expressed in cylindrical and spherical coordi-
nates. The differential control volumes for these two coordinate systems are shown
in Figures 2.12 and 2.13.

Cylindrical Coordinates When the del operator V of Equation 2.3 is expressed
in cylindrical coordinates, the general form of the heat flux vector, and hence of
Fourier’s law, is

" JT 19T JT
where
" o__ JT " o__ k 9T " o__ JT
ar = _kﬁ Uy = “Toh 0 = _kﬁ (2.23)
%+ dz

FIGURE 2.12  Differential control volume, dr *r d¢ + dz, for conduction analysis in
cylindrical coordinates (r, ¢, z).
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Yo + do

rsin6 do

FIGURE 2.13  Differential control volume, dr - rsin 6 d¢ - r df, for conduction analysis in
spherical coordinates (r, ¢, 6).

are heat flux components in the radial, circumferential, and axial directions, respec-
tively. Applying an energy balance to the differential control volume of Figure 2.12,
the following general form of the heat equation is obtained:

10 JaT 1 49 oT
fﬂf('“ﬂf) Zaqs(k ¢)
J JoT a JoT
+ c?Z<k&2> +4=pc, O (2.24)

Spherical Coordinates In spherical coordinates the general form of the heat
flux vector and Fourier’s law is

P 14T 1 4T
q" = —kVT k( +Jr(m+krsin0a¢) (2.25)
where
_ ol " — _Kﬂ n — k ﬂ
Ar = K 0 r o6 ¢ rsiné do (2.26)

are heat flux components in the radial, polar, and azimuthal directions, respectively.
Applying an energy balance to the differential control volume of Figure 2.13, the
following general form of the heat equation is obtained:

190 20T 1 JT
e k
r2d r< &r) I sm200¢>< ¢>>

1 IT) , »_ T
Zeing 90 <k3|n<9[90>+q—pcp 7t (2.27)

Since it is important that you be able to apply conservation principles to dif-
ferential control volumes, you should attempt to derive Equation 2.24 or 2.27 (see
Problems 2.35 and 2.36). Note that the temperature gradient in Fourier’s law must
have units of K/m. Hence, when evaluating the gradient for an angular coordinate,
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it must be expressed in terms of the differential change in arc length. For example,
the heat flux component in the circumferential direction of a cylindrical coordinate
system is g, = —(k/r)(dT/d¢), and not q, = —k(IT/d¢h).

EXAMPLE 2.2

The temperature distribution across a wall 1m thick at a certain instant of time is
given as
T(x) = a+ bx + cx?

where T is in degrees Celsius and x is in meters, while a = 900°C, b = —300°C/m,
and ¢ = —50°C/m2 A uniform heat generation, g = 1000 W/m?, is present in the
wall of area 10 m? having the properties p = 1600 kg/m?, k = 40 W/m - K, and C, =
4 kJlkg - K.

1. Determine the rate of heat transfer entering the wall (x = 0) and leaving the
wall (x = 1m).

2. Determine the rate of change of energy storage in the wall.

3. Determine the time rate of temperature change at x = 0, 0.25, and 0.5 m.

SOLUTION

Known: Temperature distribution T(x) at an instant of time t in a one-dimensional
wall with uniform heat generation.

Find:
1. Heat rates entering, g;, (x = 0), and leaving, go, (x = 1 m), the wall.
2. Rate of change of energy storage in the wall, Est.
3. Time rate of temperature change at x = 0, 0.25, and 0.5 m.

Schematic:
A=10m? §= 1000 W/m?
I I k = 40 W/m-K
I I p=1600 kg/m®
| | cp=4kikgK
| |
T(x) = : :
a + bx + cx? R "
1 N 1
| |
1 E9 1
| (3 |
| Eg |
| |
| |
qin—V : : —quut
| |
| |
| |
| |
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Assumptions:
1. One-dimensional conduction in the x direction.
2. Isotropic medium with constant properties.
3. Uniform internal heat generation, g (W/md).

Analysis:

1. Recall that once the temperature distribution is known for a medium, it is a
simple matter to determine the conduction heat transfer rate at any point in the
medium, or at its surfaces, by using Fourier’s law. Hence the desired heat rates
may be determined by using the prescribed temperature distribution with
Equation 2.1. Accordingly,

Gin = 0(0) = —KATT], o = —KA(b + 20%),
0in = —bkA = 300°C/m X 40 W/m - K X 10 m? = 120 kW <
Similarly,

.
Qo = G(L) = —KAT - = = KA(D + 200),

Jout = —(b + 2cL)kA = —[ — 300°C/m
+ 2(—50°C/m?) X 1 m] X 40 W/m - K X 10 m? = 160 kW <

2. The rate of change of energy storage in the wall Est may be determined by ap-
plying an overall energy balance to the wall. Using Equation 1.11c for a control
volume about the wall,

Ein + Eg —Eot = By
where Eg = JAL, it follows that

Est = Ein + Eg - Eout = Oin + qAL ~ Cout

E, = 120 kW + 1000 W/m? X 10 m? X 1 m — 160 kW
E,= —30kW N

3. The time rate of change of the temperature at any point in the medium may be
determined from the heat equation, Equation 2.19, rewritten as

aT_ kPTG
. PG PG

From the prescribed temperature distribution, it follows that

T _ 9 (T
ox?2  ox\ax

= % (b + 2cx) = 2¢ = 2(—50°C/m?) = —100°C/m?
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Note that this derivative is independent of position in the medium. Hence the
time rate of temperature change is also independent of position and is given by

ﬂ _ 40 V3V/m * K X (_1OO°C/m2)
gt~ 1600 kg/m® X 4 kl/kg - K
1000 W/m?
1600 kg/m® X 4 ki/kg - K
%—I — —6.25 X 107*C/s + 1.56 X 10"*C/s

=—4.69 X 10*C/s <

Comments:

1. From the above result it is evident that the temperature at every point within the
wall is decreasing with time.

2. Fourier’s law can always be used to compute the conduction heat rate from
knowledge of the temperature distribution, even for unsteady conditions with
internal heat generation.

_

Microscale Effects For most practical situations, the heat diffusion equations
generated in this text may be used with confidence. However, these equations are
based on use of Fourier’s law to describe the conduction effects, which does not ac-
count for the finite speed at which thermal information is propagated within the
medium by the various energy carriers. The consequences of the finite propagation
speed may be neglected if the heat transfer events of interest occur over a suffi-
ciently long time scale, At, such that

/\mfp

AL <1 (2.28)
The heat diffusion equations of this text are likewise invalid for problems where
boundary scattering must be explicitly considered. For example, the temperature dis-
tribution within the thin film of Figure 2.6b cannot be determined by applying the
foregoing heat diffusion equations. Additional discussion of micro- and nanoscale
heat transfer applications and analysis methods is available in the literature [1, 15].

2.4

Boundary and Initial Conditions

To determine the temperature distribution in a medium, it is necessary to solve the
appropriate form of the heat equation. However, such a solution depends on the
physical conditions existing at the boundaries of the medium and, if the situation is
time dependent, on conditions existing in the medium at some initial time. With
regard to the boundary conditions, there are several common possibilities that are
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TABLE 2.2 Boundary conditions for the heat
diffusion equation at the surface (x = 0)

1. Constant surface temperature T
T(0,t) =T, (2.29)

T(x, 1)

2. Constant surface heat flux
(a) Finite heat flux

JaT
IX

k% ko = (2.30)

(b) Adiabatic or insulated surface

JaT
X

w=0=0 (2.31) T(x, t)
F—=x

3. Convection surface condition

aT

_kﬁx

=0 = h[T. — T(0, )] (2.32)

simply expressed in mathematical form. Because the heat equation is second order
in the spatial coordinates, two boundary conditions must be expressed for each co-
ordinate needed to describe the system. Because the equation is first order in time,
however, only one condition, termed the initial condition, must be specified.

Three kinds of boundary conditions commonly encountered in heat transfer are
summarized in Table 2.2. The conditions are specified at the surface x = 0 for a
one-dimensional system. Heat transfer is in the positive x direction with the temper-
ature distribution, which may be time dependent, designated as T(x, t). The first
condition corresponds to a situation for which the surface is maintained at a fixed
temperature T,. It is commonly termed a Dirichlet condition, or a boundary condition
of the first kind. It is closely approximated, for example, when the surface is in con-
tact with a melting solid or a boiling liquid. In both cases there is heat transfer at the
surface, while the surface remains at the temperature of the phase change process.
The second condition corresponds to the existence of a fixed or constant heat flux
at the surface. This heat flux is related to the temperature gradient at the surface by
Fourier’s law, Equation 2.6, which may be expressed as

./
x=0 " Ms

” _ ﬂ
6/(0) = k2

It is termed a Neumann condition, or a boundary condition of the second kind, and
may be realized by bonding a thin film electric heater to the surface. A special case
of this condition corresponds to the perfectly insulated, or adiabatic, surface for
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which aT/ax\xzo = 0. The boundary condition of the third kind corresponds to the
existence of convection heating (or cooling) at the surface and is obtained from the
surface energy balance discussed in Section 1.3.2.

EXAMPLE 2.3

A long copper bar of rectangular cross section, whose width w is much greater
than its thickness L, is maintained in contact with a heat sink at its lower surface,
and the temperature throughout the bar is approximately equal to that of the sink,
T,. Suddenly, an electric current is passed through the bar and an airstream of
temperature T.. is passed over the top surface, while the bottom surface continues
to be maintained at T,. Obtain the differential equation and the boundary and ini-
tial conditions that could be solved to determine the temperature as a function of
position and time in the bar.

SOLUTION

Known: Copper bar initially in thermal equilibrium with a heat sink is suddenly
heated by passage of an electric current.

Find: Differential equation and boundary and initial conditions needed to deter-
mine temperature as a function of position and time within the bar.

Schematic:
Copper bar (k, o)
T(X,y,z,1) = T(X, 1)
oz
Air Y —
T, h s X
Air — /T
T.,h -
TL, Heat sink
[ T T,
G—— L XT
[To =T,
Assumptions:

1. Since the bar is long and w > L, end and side effects are negligible and heat
transfer within the bar is primarily one dimensional in the x direction.

2. Uniform volumetric heat generation, q.
3. Constant properties.

Analysis:  The temperature distribution is governed by the heat equation (2.17),
which, for the one-dimensional and constant property conditions of the present prob-
lem, reduces to

gl 1_=01 (D) <
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where the temperature is a function of position and time, T(x, t). Since this differen-
tial equation is second order in the spatial coordinate x and first order in time t, there
must be two boundary conditions for the x direction and one condition, termed the
initial condition, for time. The boundary condition at the bottom surface corre-
sponds to case 1 of Table 2.2. In particular, since the temperature of this surface is
maintained at a value, T,, which is fixed with time, it follows that

TO,t) =T, (2 <

The convection surface condition, case 3 of Table 2.2, is appropriate for the top sur-
face. Hence

aT

_kw

x=0=h[T(L, 1) = T.] ® o

The initial condition is inferred from recognition that, before the change in condi-
tions, the bar is at a uniform temperature T,. Hence

T(x,0)=T, 4) <

If T,, T.., 4, and h are known, Equations 1 through 4 may be solved to obtain the time-
varying temperature distribution T(x, t) following imposition of the electric current.

Comments:

1. The heat sink at x = 0 could be maintained by exposing the surface to an ice
bath or by attaching it to a cold plate. A cold plate contains coolant channels
machined in a solid of large thermal conductivity (usually copper). By circulat-
ing a liquid (usually water) through the channels, the plate, and hence the sur-
face to which it is attached, may be maintained at a nearly uniform temperature.

2. The temperature of the top surface T(L, t) will change with time. This tempera-
ture is an unknown and may be obtained after finding T(x, t).

3. We may use our physical intuition to sketch temperature distributions in the bar
at selected times from the beginning to the end of the transient process. If we
assume that T,, > T, and that the electric current is sufficiently large to heat the
bar to temperatures in excess of T, the following distributions would corre-
spond to the initial condition (t = 0), the final (steady-state) condition (t — o),
and two intermediate times.

—T(X, =), Steady-state condition

L — T(x, 0), Initial condition

Distance, X

Note how the distributions comply with the initial and boundary conditions.
What is a special feature of the distribution labeled (b)?
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4. Our intuition may also be used to infer the manner in which the heat flux varies
with time at the surfaces (x = 0, L) of the bar. On gy — t coordinates, the tran-
sient variations are as follows.

a0
o

0 Time, t —>

Convince yourself that the foregoing variations are consistent with the tempera-
ture distributions of Comment 3. For t — oo, how are qy(0) and qy(L) related to
the volumetric rate of energy generation?

_

The primary objectives of this chapter were to improve your understanding of the con-
duction rate equation (Fourier’s law) and to familiarize you with the heat equation. You
may test your understanding of related concepts by addressing the following questions.

« In the general formulation of Fourier’s law (applicable to any geometry), what are
the vector and scalar quantities? Why is there a minus sign on the right-hand side
of the equation?

e What is an isothermal surface? What can be said about the heat flux at any loca-
tion on this surface?

« What form does Fourier’s law take for each of the orthogonal directions of Cartesian,
cylindrical, and spherical coordinate systems? In each case, what are the units of
the temperature gradient? Can you write each equation from memory?

< An important property of matter is defined by Fourier’s law. What is it? What is
its physical significance? What are its units?

« What is an isotropic material?

« Why is the thermal conductivity of a solid generally larger than that of a liquid?
Why is the thermal conductivity of a liquid larger than that of a gas?

«Why is the thermal conductivity of an electrically conducting solid generally
larger than that of a nonconductor? Why are materials such as beryllium oxide,
diamond, and silicon carbide (see Table A.2) exceptions to this rule?

« Is the effective thermal conductivity of an insulation system a true manifestation of
the efficacy with which heat is transferred through the system by conduction alone?

< Why does the thermal conductivity of a gas increase with increasing temperature?
Why is it approximately independent of pressure?

< What is the physical significance of the thermal diffusivity? How is it defined and
what are its units?
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< What is the physical significance of each term appearing in the heat equation?

« Cite some examples of thermal energy generation. If the rate at which thermal en-
ergy is generated per unit volume, ¢, varies with location in a medium of volume
V, how can the rate of energy generation for the entire medium, E,, be determined

from knowledge of q(x, y, z)?

« For a chemically reacting medium, what kind of reaction provides a source of
thermal energy (q > 0)? What kind of reaction provides a sink for thermal energy

q<0)?

« To solve the heat equation for the temperature distribution in a medium, boundary
conditions must be prescribed at the surfaces of the medium. What physical condi-
tions are commonly suitable for this purpose?
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Fourier’s Law

2.1 Assume steady-state, one-dimensional heat conduction

through the axisymmetric shape shown below.

2.2

Assuming constant properties and no internal heat
generation, sketch the temperature distribution on T—x
coordinates. Briefly explain the shape of your curve.

A hot water pipe with outside radius r; has a tempera-
ture T,. A thick insulation applied to reduce the heat
loss has an outer radius r, and temperature T,. On T-r
coordinates, sketch the temperature distribution in the
insulation for one-dimensional, steady-state heat trans-
fer with constant properties. Give a brief explanation,
justifying the shape of your curve.
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A spherical shell with inner radius r, and outer radius r,
has surface temperatures T, and T,, respectively, where
T, > T,. Sketch the temperature distribution on T-r
coordinates assuming steady-state, one-dimensional
conduction with constant properties. Briefly justify the
shape of your curve.

Assume steady-state, one-dimensional heat conduction
through the symmetric shape shown.

Assuming that there is no internal heat generation, derive
an expression for the thermal conductivity k(x) for these
conditions: A(x) = (1 — x), T(x) = 300(1 — 2x — x3),
and q = 6000 W, where A is in square meters, T in
kelvins, and x in meters.

A solid, truncated cone serves as a support for a system
that maintains the top (truncated) face of the cone at a
temperature T,, while the base of the cone is at a tem-
perature T, < T;.

The thermal conductivity of the solid depends on tem-
perature according to the relation k = k, — aT, where a
is a positive constant, and the sides of the cone are well
insulated. Do the following quantities increase, de-
crease, or remain the same with increasing x: the heat
transfer rate q,, the heat flux qy, the thermal conductiv-
ity k, and the temperature gradient dT/dx?

To determine the effect of the temperature dependence
of the thermal conductivity on the temperature distribu-
tion in a solid, consider a material for which this depen-
dence may be represented as

k=k,+aT

where k, is a positive constant and a is a coefficient that
may be positive or negative. Sketch the steady-state
temperature distribution associated with heat transfer in

2.7

2.8

2.9
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a plane wall for three cases corresponding to a > 0,
a=0,anda<0.

A young engineer is asked to design a thermal protec-
tion barrier for a sensitive electronic device that might
be exposed to irradiation from a high-powered infrared
laser. Having learned as a student that a low thermal
conductivity material provides good insulating charac-
teristics, the engineer specifies use of a nanostructured
aerogel, characterized by a thermal conductivity of k, =
0.005 W/m - K, for the protective barrier. The engi-
neer’s boss questions the wisdom of selecting the aero-
gel because it has a low thermal conductivity. Consider
the sudden laser irradiation of (a) pure aluminum,
(b) glass, and (c) aerogel. The laser provides irradiation
of G = 10 X 10° W/m?. The absorptivities of the mate-
rials are « = 0.2, 0.9, and 0.8 for the aluminum, glass,
and aerogel, respectively, and the initial temperature of
the barrier is T; = 300 K. Explain why the boss is con-
cerned. Hint: All materials experience thermal expan-
sion (or contraction), and local stresses that develop
within a material are, to a first approximation, propor-
tional to the local temperature gradient.

Consider steady-state conditions for one-dimensional
conduction in a plane wall having a thermal conductiv-
ity k = 50 W/m - K and a thickness L = 0.25 m, with
no internal heat generation.

L

Determine the heat flux and the unknown quantity for
each case and sketch the temperature distribution, indi-
cating the direction of the heat flux.

Case T,(°C) T,(°C) dT/dx (K/m)
1 50 -20
2 -30 —-10
3 70 160
4 40 -80
5 30 200
Consider a plane wall 100 mm thick and of thermal

conductivity 100 W/m - K. Steady-state conditions are
known to exist with T, = 400 K and T, = 600 K. Deter-
mine the heat flux gy and the temperature gradient dT/dx
for the coordinate systems shown.
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T(x) T(x) T(x)
T, T, T,
T T T,
X X X
(a) (b) (c)
2.10 A cylinder of radius r,, length L, and thermal conductiv-

211

2.12

2.13

ity k is immersed in a fluid of convection coefficient h and
unknown temperature T... At a certain instant the tempera-
ture distribution in the cylinder is T(r) = a + br?, where
a and b are constants. Obtain expressions for the heat
transfer rate at r, and the fluid temperature.

In the two-dimensional body illustrated, the gradient at
surface A is found to be dT/dy = 30 K/m. What are
dTlay and dT/ox at surface B?

Insulation -
B, Tg = 100°C

G k=10 W/m-K
oy
T—»X

A, T,=0°C
Sections of the trans-Alaska pipeline run above the
ground and are supported by vertical steel shafts (k = 25
Wi/m - K) that are 1 m long and have a cross-sectional
area of 0.005m? Under normal operating conditions,
the temperature variation along the length of a shaft is
known to be governed by an expression of the form

T =100 — 150x + 10x?

where T and x have units of °C and meters, respec-
tively. Temperature variations are small over the shaft
cross section. Evaluate the temperature and conduction
heat rate at the shaft-pipeline joint (x = 0) and at the
shaft—ground interface (x = 1 m). Explain the differ-
ence in the heat rates.

Steady-state, one-dimensional conduction occurs in a
rod of constant thermal conductivity k and variable
cross-sectional area A, (x) = A,e®™, where A, and a are
constants. The lateral surface of the rod is well insulated.

AX) = A

(a) Write an expression for the conduction heat rate,
gx(X). Use this expression to determine the temper-
ature distribution T(x) and qualitatively sketch the
distribution for T(0) > T(L).

Now consider conditions for which thermal
energy is generated in the rod at a volumetric rate
q = g, exp(—ax), where g, is a constant. Obtain an
expression for q,(x) when the left face (x = 0) is
well insulated.

(b)

Thermophysical Properties

2.14

2.15

2.16

Consider a 300 mm X 300 mm window in an aircraft.
For a temperature difference of 80°C from the inner to
the outer surface of the window, calculate the heat loss
through L = 10-mm-thick polycarbonate, soda lime
glass, and aerogel windows, respectively. The thermal
conductivities of the aerogel and polycarbonate are
Keg = 0.014 W/m - K and k;,; = 0.21 W/m - K, respec-
tively. Evaluate the thermal conductivity of the soda
lime glass at 300 K. If the aircraft has 130 windows and
the cost to heat the cabin air is $1/kW - h, compare the
costs associated with the heat loss through the windows
for an 8-hour intercontinental flight.

Gold is commonly used in semiconductor packaging to
form interconnections (also known as interconnects)
that carry electrical signals between different devices in
the package. In addition to being a good electrical con-
ductor, gold interconnects are also effective at protecting
the heat-generating devices to which they are attached
by conducting thermal energy away from the devices to
surrounding, cooler regions. Consider a thin film of gold
that has a cross section of 60 nm X 250 nm.

(a) For an applied temperature difference of 20°C, de-
termine the energy conducted along a 1-pum-long,
thin-film interconnect. Evaluate properties at 300 K.

(b) Plot the lengthwise (in the I-um direction) and
spanwise (in the thinnest direction) thermal con-
ductivities of the gold film as a function of the film
thickness, L, for 30 = L = 140 nm.

A TV advertisement by a well-known insulation manufac-
turer states: it isn’t the thickness of the insulating material
that counts, it’s the R-value. The ad shows that to obtain
an R-value of 19, you need 18 ft of rock, 15 in. of wood,
or just 6 in. of the manufacturer’s insulation. Is this adver-
tisement technically reasonable? If you are like most TV
viewers, you don’t know the R-value is defined as L/k,
where L (in.) is the thickness of the insulation and k (Btu -
in./hr - ft? - °F) is the thermal conductivity of the material.

2.17 An apparatus for measuring thermal conductivity em-

ploys an electrical heater sandwiched between two
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identical samples of diameter 30 mm and length 60 mm,
which are pressed between plates maintained at a uni-
form temperature T, = 77°C by a circulating fluid. A
conducting grease is placed between all the surfaces to
ensure good thermal contact. Differential thermocouples
are imbedded in the samples with a spacing of 15 mm.
The lateral sides of the samples are insulated to ensure
one-dimensional heat transfer through the samples.

Plate, T,

Sample AT,

Heater
leads

Insulation

Sample —

Plate, T,

(a) With two samples of SS316 in the apparatus, the
heater draws 0.353 A at 100 V and the differential
thermocouples indicate AT, = AT, = 25.0°C. What
is the thermal conductivity of the stainless steel sam-
ple material? What is the average temperature of the
samples? Compare your result with the thermal con-
ductivity value reported for this material in Table A.1.

(b) By mistake, an Armco iron sample is placed in the
lower position of the apparatus with one of the
SS316 samples from part (a) in the upper portion.
For this situation, the heater draws 0.601 A at 100 VV
and the differential thermocouples indicate AT, =
AT, = 15.0°C. What are the thermal conductivity
and average temperature of the Armco iron sample?

(c) What is the advantage in constructing the apparatus
with two identical samples sandwiching the heater
rather than with a single heater-sample combina-
tion? When would heat leakage out of the lateral
surfaces of the samples become significant? Under
what conditions would you expect AT, # AT,?

An engineer desires to measure the thermal conductiv-
ity of an aerogel material. It is expected that the aerogel
will have an extremely small thermal conductivity.

(a) Explain why the apparatus of Problem 2.17 cannot
be used to obtain an accurate measurement of the
aerogel’s thermal conductivity.

(b) The engineer designs a new apparatus for which an
electric heater of diameter D = 150 mm is sand-
wiched between two thin plates of aluminum. The
steady-state temperatures of the 5-mm-thick alu-
minum plates, T, and T, are measured with
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thermocouples. Aerogel sheets of thickness t = 5
mm are placed outside the aluminum plates, while
a coolant with an inlet temperature of T.; = 25°C
maintains the exterior surfaces of the aerogel at a
low temperature. The circular aerogel sheets are
formed so that they encase the heater and alu-
minum sheets, providing insulation to minimize ra-
dial heat losses. At steady state, T, = T, = 55°C
and the heater draws 125 mA at 10 V. Determine
the value of the aerogel thermal conductivity k,.

(c) Calculate the temperature difference across the
thickness of the 5-mm-thick aluminum plates.
Comment on whether it is important to know the
axial locations at which the temperatures of the
aluminum plates are measured.

(d) If liquid water is used as the coolant with a total
flow rate of m = 1 kg/min (0.5 kg/min for each of
the two streams), calculate the outlet temperature
of the water, T,

Heater

C’i\’i‘ leads J-Ll/Coolant in

]

Aerogel
sample

=5~ Aluminum

T, T

2.19 A method for determining the thermal conductivity k

and the specific heat ¢, of a material is illustrated in the
sketch. Initially the two identical samples of diameter
D = 60 mm and thickness L = 10 mm and the thin
heater are at a uniform temperature of T; = 23.00°C,
while surrounded by an insulating powder. Suddenly
the heater is energized to provide a uniform heat flux q,
on each of the sample interfaces, and the heat flux is
maintained constant for a period of time, At,. A short
time after sudden heating is initiated, the temperature at
this interface T, is related to the heat flux as

" t 12
To(t) - Ti = 2q0<7TpC k)
P
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For a particular test run, the electrical heater dissipates
15.0 W for a period of At, = 120 s and the temperature
at the interface is T,(30 s) = 24.57°C after 30 s of heat-
ing. A long time after the heater is deenergized, t > At,,
the samples reach the uniform temperature of T,() =
33.50°C. The density of the sample materials, deter-
mined by measurement of volume and mass, is p =
3965 kg/m®.

Sample 1, D, L, p

Heater leads

Sample 2, D, L, p

Determine the specific heat and thermal conductivity of
the test material. By looking at values of the thermo-
physical properties in Table A.1 or A.2, identify the test
sample material.

The Heat Equation

2.20

221

At a given instant of time the temperature distribution
within an infinite homogeneous body is given by the
function

T, Y, 2) =x2—2y2+ 22— xy + 2yz

Assuming constant properties and no internal heat gen-
eration, determine the regions where the temperature
changes with time.

A pan is used to boil water by placing it on a stove,
from which heat is transferred at a fixed rate q,. There
are two stages to the process. In Stage 1, the water is
taken from its initial (room) temperature T; to the boil-
ing point, as heat is transferred from the pan by natural
convection. During this stage, a constant value of the
convection coefficient h may be assumed, while the
bulk temperature of the water increases with time,
T., = T.,(t). In Stage 2, the water has come to a boil,
and its temperature remains at a fixed value, T,, = T, as
heating continues. Consider a pan bottom of thickness L
and diameter D, with a coordinate system correspond-
ing to x =0 and x = L for the surfaces in contact with
the stove and water, respectively.

(@) Write the form of the heat equation and the boundary/
initial conditions that determine the variation of
temperature with position and time, T(x,t), in the
pan bottom during Stage 1. Express your result in
terms of the parameters q,, D, L, h, and T.,, as well
as appropriate properties of the pan material.

2.22

2.23

2.24

2.25

(b) During Stage 2, the surface of the pan in contact
with the water is at a fixed temperature, T(L,t) =
T. > T,. Write the form of the heat equation and
boundary conditions that determine the temperature
distribution, T(x), in the pan bottom. Express your
result in terms of the parameters q,, D, L, and T, as
well as appropriate properties of the pan material.

Uniform internal heat generation at g = 5 X 10" W/m® is
occurring in a cylindrical nuclear reactor fuel rod of 50-mm
diameter, and under steady-state conditions the tempera-
ture distribution is of the form T(r) = a + br?, where T is
in degrees Celsius and r is in meters, while a = 800°C and
b = —4.167 X 10°°C/m?. The fuel rod properties are k =
30 W/m - K, p = 1100 kg/m?, and ¢, = 800 J/kg - K.

(@) What is the rate of heat transfer per unit length of
the rod at r = O (the centerline) and at r = 25 mm
(the surface)?

(b) If the reactor power level is suddenly increased to
d, = 10° W/m®, what is the initial time rate of tem-
perature change at r = 0 and r = 25 mm?

The steady-state temperature distribution in a one-
dimensional wall of thermal conductivity 50 W/m - K
and thickness 50 mm is observed to be T(°C) = a + bx?,
where a = 200°C, b = —2000°C/m?, and x is in meters.

(a) What is the heat generation rate q in the wall?
(b) Determine the heat fluxes at the two wall faces. In

what manner are these heat fluxes related to the
heat generation rate?

The temperature distribution across a wall 0.3 m thick at
a certain instant of time is T(x) = a + bx + cx?, where T
is in degrees Celsius and x is in meters, a = 200°C,
b = —200°C/m, and ¢ = 30°C/m?. The wall has a ther-
mal conductivity of 1 W/m - K.

(@ On a unit surface area basis, determine the rate of
heat transfer into and out of the wall and the rate of
change of energy stored by the wall.

(b) If the cold surface is exposed to a fluid at 100°C,
what is the convection coefficient?

A plane wall of thickness 2L = 40 mm and thermal
conductivity k = 5 W/m - K experiences uniform volu-
metric heat generation at a rate ¢, while convection heat
transfer occurs at both of its surfaces (x = —L, + L),
each of which is exposed to a fluid of temperature
T, = 20°C. Under steady-state conditions, the tempera-
ture distribution in the wall is of the form T(x) = a +
bx + cx? where a = 82.0°C, b = —210°C/m, ¢ =
—2 X 10*C/m?, and x is in meters. The origin of the
x-coordinate is at the midplane of the wall.

(a) Sketch the temperature distribution and identify
significant physical features.
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What is the volumetric rate of heat generation q
in the wall?

Determine the surface heat fluxes, gy(—L) and
qv(+L). How are these fluxes related to the heat
generation rate?

What are the convection coefficients for the sur-
facesatx = —Landx = + L?

(b)
©

(d)

Obtain an expression for the heat flux distribution,
0y (x). Is the heat flux zero at any location? Explain
any significant features of the distribution.

If the source of the heat generation is suddenly
deactivated (g = 0), what is the rate of change of
energy stored in the wall at this instant?

What temperature will the wall eventually reach
with g = 0? How much energy must be removed by
the fluid per unit area of the wall (J/m?) to reach this
state? The density and specific heat of the wall ma-
terial are 2600 kg/m?® and 800 J/kg - K, respectively.

®

©)

One-dimensional, steady-state conduction with uniform
internal energy generation occurs in a plane wall with a
thickness of 50 mm and a constant thermal conductivity
of 5 W/m - K. For these conditions, the temperature dis-
tribution has the form, T(x) = a + bx + cx? The surface
at x = 0 has a temperature of T(0)=T,= 120°C and
experiences convection with a fluid for which T,, = 20°C
and h =500 W/m?-K. The surface at x =L is well
insulated.

T(x)

=20°C
500 W/m2K

M

Fluid

e G,k =5 WmeK

Il«
l_’x L =50 mm
(@) Applying an overall energy balance to the wall, cal-
culate the internal energy generation rate, g.

(b) Determine the coefficients a, b, and ¢ by applying
the boundary conditions to the prescribed tempera-
ture distribution. Use the results to calculate and

plot the temperature distribution.

Consider conditions for which the convection coef-
ficient is halved, but the internal energy generation
rate remains unchanged. Determine the new values
of a, b, and ¢, and use the results to plot the temper-
ature distribution. Hint: recognize that T(0) is no
longer 120°C.

(©
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Central (stagnant) layer ——
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(d) Under conditions for which the internal energy gen-
eration rate is doubled, and the convection coeffi-
cient remains unchanged (h = 500 W/m? - K), deter-
mine the new values of a, b, and c and plot the
corresponding temperature distribution. Referring to
the results of parts (b), (c), and (d) as Cases 1, 2, and
3, respectively, compare the temperature distribu-
tions for the three cases and discuss the effects of h
and ¢ on the distributions.

A salt-gradient solar pond is a shallow body of water
that consists of three distinct fluid layers and is used
to collect solar energy. The upper- and lower-most
layers are well mixed and serve to maintain the upper
and lower surfaces of the central layer at uniform tem-
peratures T, and T,, where T, > T,. Although there is
bulk fluid motion in the mixed layers, there is no such
motion in the central layer. Consider conditions for
which solar radiation absorption in the central layer
provides nonuniform heat generation of the form
q = Ae~* and the temperature distribution in the cen-
tral layer is

T(x)=—A2e‘ax+Bx+C
ka

The quantities A (W/m3), a (1/m), B (K/m), and C (K)

are known constants having the prescribed units, and k
is the thermal conductivity, which is also constant.

Solar radiationgf:’i;

Mixed layer ——

Mixed layer ——

(a) Obtain expressions for the rate at which heat is
transferred per unit area from the lower mixed layer
to the central layer and from the central layer to the
upper mixed layer.

(b) Determine whether conditions are steady or transient.

(c) Obtain an expression for the rate at which thermal
energy is generated in the entire central layer, per
unit surface area.

2.28 The steady-state temperature distribution in a semitrans-

parent material of thermal conductivity k and thickness
L exposed to laser irradiation is of the form

T(x)=—Aze‘aX+Bx+C
ka
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where A, a, B, and C are known constants. For this situ-
ation, radiation absorption in the material is manifested
by a distributed heat generation term, g(x).

Laser irradiation

1111

|

-L
tSemi’transparent medium, T(x)

b3

(a) Obtain expressions for the conduction heat fluxes
at the front and rear surfaces.

(b) Derive an expression for g(x).

(c) Derive an expression for the rate at which radiation
is absorbed in the entire material, per unit surface
area. Express your result in terms of the known
constants for the temperature distribution, the ther-
mal conductivity of the material, and its thickness.

2.29 The steady-state temperature distribution in a one-
dimensional wall of thermal conductivity k and thickness
L is of the form T = ax® + bx? + cx + d. Derive expres-
sions for the heat generation rate per unit volume in the
wall and the heat fluxes at the two wall faces (x = 0, L).

One-dimensional, steady-state conduction with no in-
ternal energy generation is occurring in a plane wall of
constant thermal conductivity.

120 p
100
80

60

T(°C)

40

20

04

X

— 1 §=0,k=4.5WmK
T, =20°C
h = 30 W/m2K

ft

(@) Is the prescribed temperature distribution possible?
Briefly explain your reasoning.

(b) With the temperature at x = 0 and the fluid tem-
perature fixed at T(0) =0°C and T. = 20°C,

f 0.18 m
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respectively, compute and plot the temperature at
x = L, T(L), as a function of h for 10 = h = 100
W/m? - K. Briefly explain your results.

2.31 A plane layer of coal of thickness L = 1 m experiences
uniform volumetric generation at a rate of g = 20 W/m®
due to slow oxidation of the coal particles. Averaged
over a daily period, the top surface of the layer transfers
heat by convection to ambient air for which
h=5W/m?-K and T,, = 25°C, while receiving solar ir-
radiation in the amount Gg = 400 W/mZ. Irradiation from
the atmosphere may be neglected. The solar absorptivity
and emissivity of the surface are each ag = & = 0.95.

Ambient air
T.h
—
—

’—>><

(a) Write the steady-state form of the heat diffusion
equation for the layer of coal. Verify that this equa-
tion is satisfied by a temperature distribution of the
form

_ qL? X2
From this distribution, what can you say about con-
ditions at the bottom surface (x = 0)? Sketch the
temperature distribution and label key features.

(b) Obtain an expression for the rate of heat transfer by
conduction per unit area at x = L. Applying an
energy balance to a control surface about the top
surface of the layer, obtain an expression for T.
Evaluate T, and T(0) for the prescribed conditions.

m Daily average values of Gg and h depend on a num-
ber of factors such as time of year, cloud cover,
and wind conditions. For h = 5W/m? - K, compute
and plot T, and T(0) as a function of Gg for
50 = Gg = 500 W/m?. For Gg = 400 W/m?, com-
pute and plot T, and T(0) as a function of h for
5=h=50W/m?-K.

2.32 The cylindrical system illustrated has negligible varia-
tion of temperature in the r and z directions. Assume
that Ar = r, — r; is small compared to r; and denote the
length in the z direction, normal to the page, as L.
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m Problems

e /Insulation

(a) Beginning with a properly defined control volume
and considering energy generation and storage ef-
fects, derive the differential equation that prescribes
the variation in temperature with the angular coor-
dinate ¢. Compare your result with Equation 2.24.

(b) For steady-state conditions with no internal heat gen-
eration and constant properties, determine the tem-
perature distribution T(¢) in terms of the constants
Ti, Ty, 1;, and r,. Is this distribution linear in ¢?

(c) For the conditions of part (b) write the expression
for the heat rate q.

Beginning with a differential control volume in the
form of a cylindrical shell, derive the heat diffusion
equation for a one-dimensional, cylindrical, radial coor-
dinate system with internal heat generation. Compare
your result with Equation 2.24.

Beginning with a differential control volume in the
form of a spherical shell, derive the heat diffusion equa-
tion for a one-dimensional, spherical, radial coordinate
system with internal heat generation. Compare your
result with Equation 2.27.

Derive the heat diffusion equation, Equation 2.24, for
cylindrical coordinates beginning with the differential
control volume shown in Figure 2.12.

Derive the heat diffusion equation, Equation 2.27, for
spherical coordinates beginning with the differential
control volume shown in Figure 2.13.

A steam pipe is wrapped with insulation of inner and
outer radii, r; and r,, respectively. At a particular instant
the temperature distribution in the insulation is known
to be of the form

T(r) = C, '”(ri) +C,

Are conditions steady-state or transient? How do the
heat flux and heat rate vary with radius?

For a long circular tube of inner and outer radii r; and
r,, respectively, uniform temperatures T, and T, are
maintained at the inner and outer surfaces, while ther-
mal energy generation is occurring within the tube wall
(rp, < r < r,). Consider steady-state conditions for
which T, > T,. Is it possible to maintain a linear radial

2.39
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temperature distribution in the wall? If so, what special
conditions must exist?

Passage of an electric current through a long conducting
rod of radius r; and thermal conductivity k, results in
uniform volumetric heating at a rate of . The conduct-
ing rod is wrapped in an electrically nonconducting
cladding material of outer radius r, and thermal conduc-
tivity k., and convection cooling is provided by an
adjoining fluid.

Conducting
rod, g, k;

Cladding, k;

For steady-state conditions, write appropriate forms of
the heat equations for the rod and cladding. Express ap-
propriate boundary conditions for the solution of these
equations.

Two-dimensional, steady-state conduction occurs in a
hollow cylindrical solid of thermal conductivity k =
16 W/m - K, outer radius r, =1m, and overall length
2z, =5m, where the origin of the coordinate system is
located at the midpoint of the centerline. The inner sur-
face of the cylinder is insulated, and the temperature dis-
tribution within the cylinder has the form T(r,z) =
a+br?+clInr + dz?, where a=20°C, b = 150°C/m?,
¢ =—12°C,d = —300°C/m?and r and z are in meters.

(a) Determine the inner radius r; of the cylinder.

(b) Obtain an expression for the volumetric rate of heat
generation, q(W/m?®).

(c) Determine the axial distribution of the heat flux at
the outer surface, gy (r,, z). What is the heat rate at
the outer surface? Is it into or out of the cylinder?

(d) Determine the radial distribution of the heat flux at
the end faces of the cylinder, qj(r, +z,) and
q;(r, — z,). What are the corresponding heat rates?
Avre they into or out of the cylinder?

(e) Verify that your results are consistent with an over-
all energy balance on the cylinder.

An electric cable of radius r, and thermal conductivity k.
is enclosed by an insulating sleeve whose outer surface
is of radius r, and experiences convection heat transfer
and radiation exchange with the adjoining air and large
surroundings, respectively. When electric current passes
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through the cable, thermal energy is generated within
the cable at a volumetric rate g.

TSLII’
Electrical cable
Insulation
Tt
Ambient air B!
T.h
2
il

(a) Write the steady-state forms of the heat diffusion
equation for the insulation and the cable. Verify
that these equations are satisfied by the following
temperature distributions:

In(r/r,)

Insulation: T(r) = Tg, + (Tg1 — Ts2) In(r,/r,)

L PR
Cable: T(r)_TS'1+4kC<1 r%)
Sketch the temperature distribution, T(r), in the
cable and the sleeve, labeling key features.
Applying Fourier’s law, show that the rate of con-
duction heat transfer per unit length through the
sleeve may be expressed as

o 27Tks(Ts,1 - Ts,Z)
N ()

(b

~

Applying an energy balance to a control surface
placed around the cable, obtain an alternative ex-
pression for g, expressing your result in terms of g
and r,.

(c) Applying an energy balance to a control surface
placed around the outer surface of the sleeve, obtain
an expression from which T, may be determined as
a function of g, ry, h, T.,, &, and T,

Consider conditions for which 250 A are passing
through a cable having an electric resistance per
unit length of R, = 0.005 Q}/m, a radius of r; = 15
mm, and a thermal conductivity of k, = 200 W/m - K.
For k,=015W/m-K, r,= 155mm, h=25
W/m? - K, e = 0.9, T,, = 25°C, and T, = 35°C,
evaluate the surface temperatures, T, and T,, as
well as the temperature T, at the centerline of the
cable.

With all other conditions remaining the same, com-
pute and plot T,, Ty,, and Ty, as a function of r, for
155=r,=20mm.

(d)

2.42 A spherical shell of inner and outer radii r; and r,, re-
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spectively, contains heat-dissipating components, and at
a particular instant the temperature distribution in the
shell is known to be of the form

C
T =++G;

Are conditions steady-state or transient? How do the
heat flux and heat rate vary with radius?

A chemically reacting mixture is stored in a thin-walled
spherical container of radius r, = 200 mm, and the exother-
mic reaction generates heat at a uniform, but temperature-
dependent volumetric rate of q = q, exp(—A/T,), where
0, = 5000 W/m®, A = 75 K, and T, is the mixture temper-
ature in kelvins. The vessel is enclosed by an insulating
material of outer radius r,, thermal conductivity k, and
emissivity e. The outer surface of the insulation experi-
ences convection heat transfer and net radiation exchange
with the adjoining air and large surroundings, respectively.

TSLIY
Chemical
reaction, (T,)
Ambient air
T.,h

Insulation,

k, &

(a) Write the steady-state form of the heat diffusion
equation for the insulation. Verify that this equa-
tion is satisfied by the temperature distribution

1—mm]

T(r) = Ts,l - (Ts,l - TS,Z) |:1 _ (rllrz)

Sketch the temperature distribution, T(r), labeling
key features.

Applying Fourier’s law, show that the rate of heat
transfer by conduction through the insulation may
be expressed as
_ 47Tk(Ts,1 - Ts,z)
= Wry) — (Ury)

(b)

Applying an energy balance to a control surface
about the container, obtain an alternative expression
for q,, expressing your result in terms of ¢ and r,.
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(c) Applying an energy balance to a control surface
placed around the outer surface of the insulation,
obtain an expression from which T, may be deter-
mined as a function of g, ry, h, T, &, and Tg.

(d) The process engineer wishes to maintain a reactor
temperature of T, = T(r;) = 95°C under conditions
for which k=0.05W/m-K, r, = 208 mm,
h=5W/m?-K, £=0.9, T, = 25°C, and T, =
35°C. What is the actual reactor temperature and

the outer surface temperature of the insulation, T,?

Compute and plot the variation of T, with r, for
201 =r,=210mm. The engineer is concerned
about potential burn injuries to personnel who may
come into contact with the exposed surface of the
insulation. Is increasing the insulation thickness a
practical solution to maintaining T, < 45°C? What
other parameter could be varied to reduce T;,?

Graphical Representations

2.44

The one-dimensional system of mass M with constant
properties and no internal heat generation shown in the
figure is initially at a uniform temperature T;. The elec-
trical heater is suddenly energized providing a uniform
heat flux g, at the surface x = 0. The boundaries at x = L
and elsewhere are perfectly insulated.

Jilnsulation

Rﬁ System, mass M

(TS . Electrical

heater

(a) Write the differential equation and identify the
boundary and initial conditions that could be used
to determine the temperature as a function of posi-
tion and time in the system.

(b) On T —x coordinates, sketch the temperature distrib-
utions for the initial condition (t =< 0) and for several
times after the heater is energized. Will a steady-

state temperature distribution ever be reached?
On qgy—t coordinates, sketch the heat flux qy(x,t) at

the planes x = 0, x = L/2, and x = L as a function
of time.

(©

(d) After a period of time t, has elapsed, the heater
power is switched off. Assuming that the insulation
is perfect, the system will eventually reach a final
uniform temperature T,. Derive an expression that
can be used to determine T, as a function of the pa-
rameters g, t,, T;, and the system characteristics M,

C,, and A (the heater surface area).

2.45

2.46
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A large plate of thickness 2L is at a uniform tempera-
ture of T; = 200°C, when it is suddenly quenched by
dipping it in a liquid bath of temperature T, = 20°C.
Heat transfer to the liquid is characterized by the con-
vection coefficient h.

(a) If x = 0 corresponds to the midplane of the wall, on
T — x coordinates, sketch the temperature distribu-
tions for the following conditions: initial condition
(t=0), steady-state condition (t— o), and two in-
termediate times.

(b) On @y —t coordinates, sketch the variation with
time of the heat flux at x = L.

(c) If h = 100 W/m? - K, what is the heat flux at x = L
and t = 0? If the wall has a thermal conductivity of
k = 50 W/m - K, what is the corresponding temper-
ature gradient at x = L?

(d) Consider a plate of thickness 2L = 20 mm with a
density of p = 2770 kg/m*® and a specific heat
¢, = 875J/kg - K. By performing an energy bal-
ance on the plate, determine the amount of en-
ergy per unit surface area of the plate (J/m?) that
is transferred to the bath over the time required to
reach steady-state conditions.

(e) From other considerations, it is known that, during
the quenching process, the heat flux at x = +L and
x = —L decays exponentially with time according
to the relation, q” = Aexp(—Bt), where t is in
seconds, A = 1.80 X 10* W/m? and B = 4.126 X
10~*s™L, Use this information to determine the en-
ergy per unit surface area of the plate that is trans-
ferred to the fluid during the quenching process.

The plane wall with constant properties and no internal
heat generation shown in the figure is initially at a uni-
form temperature T, Suddenly the surface at x = L is
heated by a fluid at T.. having a convection heat transfer
coefficient h. The boundary at x = 0 is perfectly insulated.

Insulation ——%;

H

L |
X L
(a) Write the differential equation and identify the

boundary and initial conditions that could be used

to determine the temperature as a function of posi-
tion and time in the wall.
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(b) On T — x coordinates, sketch the temperature dis-
tributions for the following conditions: initial con-
dition (t = 0), steady-state condition (t — ), and
two intermediate times.

(c) On gy — t coordinates, sketch the heat flux at the
locations x = 0 and x = L. That is, show qualita-
tively how (0, t) and qy(L, t) vary with time.

(d) Write an expression for the total energy transferred
to the wall per unit volume of the wall (J/m®).

A plane wall has constant properties, no internal heat
generation, and is initially at a uniform temperature T;.
Suddenly, the surface at x = L is heated by a fluid at T.,
having a convection coefficient h. At the same instant,
the electrical heater is energized, providing a constant
heat flux g, at x = 0.

T.. h

Heater

Insulation—

|—>x L

(@ OnT — x coordinates, sketch the temperature distri-
butions for the following conditions: initial condi-
tion (t = 0), steady-state condition (t — <), and for
two intermediate times.

(b) On gy — x coordinates, sketch the heat flux corre-
sponding to the four temperature distributions of
part (a).

(c) On gy — t coordinates, sketch the heat flux at the
locations x = 0 and x = L. That is, show qualita-
tively how gy(0, t) and qgy(L, t) vary with time.

(d) Derive an expression for the steady-state tempera-
ture at the heater surface, T(0, «), in terms of qg,
T.., k, h,and L.

A plane wall with constant properties is initially at a uni-
form temperature T,. Suddenly, the surface at x = L is
exposed to a convection process with a fluid at T., (> T,)
having a convection coefficient h. Also, suddenly the
wall experiences a uniform internal volumetric heating g
that is sufficiently large to induce a maximum steady-
state temperature within the wall, which exceeds that of
the fluid. The boundary at x = 0 remains at T,,.

1k 4t=0)

T, h

N

L

L»X

(@) OnT — x coordinates, sketch the temperature distri-
butions for the following conditions: initial condi-
tion (t = 0), steady-state condition (t — <), and for
two intermediate times. Show also the distribution
for the special condition when there is no heat flow
at the x = L boundary.

(b) On gy — t coordinates, sketch the heat flux for the
locations x = 0 and x = L, that is, gy(0, t) and
gx(L, t), respectively.

2.49 Consider the conditions associated with Problem 2.48,

but now with a convection process for which T, < T..

(@) On T — x coordinates, sketch the temperature distribu-
tions for the following conditions: initial condition
(t = 0), steady-state condition (t — o°), and for two in-
termediate times. Identify key features of the distribu-
tions, especially the location of the maximum tempera-
ture and the temperature gradientat x = L.

(b) On g"” — t coordinates, sketch the heat flux for the
locations x =0 and x =L, that is, gy (0,t) and
gy (L, t), respectively. Identify key features of the
flux histories.

2.50 A spherical particle of radius r; experiences uniform

thermal generation at a rate of g. The particle is encapsu-
lated by a spherical shell of outside radius r, that is cooled
by ambient air. The thermal conductivities of the particle
and shell are k; and k,, respectively, where k; = 2k,.

Chemical reaction

q

Ambient air
T.h

rl

Control volume A

Control volume B
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(a) By applying the conservation of energy principle to
spherical control volume A, which is placed at an
arbitrary location within the sphere, determine a re-
lationship between the temperature gradient, dT/dr,
and the local radius, r, forO =r =r,.

(b) By applying the conservation of energy principle to
spherical control volume B, which is placed at an
arbitrary location within the spherical shell, deter-
mine a relationship between the temperature gradi-
ent, dT/dr, and the local radius, r, forr, =r <r,.

(c) OnT — r coordinates, sketch the temperature dis-
tribution over therange 0 = r =,

A plane wall of thickness L = 0.1 m experiences uni-
form volumetric heating at a rate g. One surface of the
wall (x = 0) is insulated, while the other surface is
exposed to a fluid at T,, = 20°C, with convection heat
transfer characterized by h = 1000 W/m? - K. Initially,
the temperature distribution in the wall is T(x,0) =
a + bx?, where a = 300°C, b = —1.0 X 10*C/m? and x
is in meters. Suddenly, the volumetric heat generation
is deactivated (q = 0 for t = 0), while convection heat
transfer continues to occur at x = L. The properties of
the wall are p = 7000 kg/m?, ¢, = 450 J/kg - K, and
k=90 W/m - K.

K p, Cp G(t<0)

L. !

(a) Determine the magnitude of the volumetric energy
generation rate g associated with the initial condi-
tion (t < 0).

(b) On T — x coordinates, sketch the temperature distri-
bution for the following conditions: initial condition
(t < 0), steady-state condition (t — o), and two in-
termediate conditions.

(c)On gy —t coordinates, sketch the variation with
time of the heat flux at the boundary exposed
to the convection process, Gy(L,t). Calculate
the corresponding value of the heat flux at
t=0,q;(L,0).

(d) Calculate the amount of energy removed from the
wall per unit area (J/m?) by the fluid stream as the
wall cools from its initial to steady-state condition.

A plane wall that is insulated on one side (x = 0) is ini-
tially at a uniform temperature T;, when its exposed sur-
face at x = L is suddenly raised to a temperature T..

93

(a) Verify that the following equation satisfies the heat
equation and boundary conditions:

TX) —Tg 7 at T X
ﬁ—Cl exp TP cos 2L

where C, is a constant and « is the thermal diffusivity.
(b) Obtain expressions for the heat flux at x = 0 and
x = L.

(c) Sketch the temperature distribution T(x) att = 0O, at
t— o0, and at an intermediate time. Sketch the
variation with time of the heat flux at x = L, q;(t).

(d) What effect does « have on the thermal response of
the material to a change in surface temperature?

2.53 A thin electrical heater dissipating 4000 W/m? is sand-

wiched between two 25-mm-thick plates whose ex-
posed surfaces experience convection with a fluid for
which T., =20°C and h = 400 W/m? - K. The thermo-
physical properties of the plate material are p = 2500
kg/m?3, ¢ = 700 J/kg- K, and k = 5 W/m- K.

/ Electric heater, g

—1 p,ck

Fluid
T.,h

"

-L

Fluid
T.h

il

X
+L

o — T

(@) On T — x coordinates, sketch the steady-state tem-
perature distribution for —L = x = +L. Calculate
values of the temperatures at the surfaces, x = = L,
and the midpoint, x = 0. Label this distribution as
Case 1, and explain its salient features.

(b) Consider conditions for which there is a loss
of coolant and existence of a nearly adiabatic con-
dition on the x = +L surface. On the T — x coordi-
nates used for part (a), sketch the corresponding
steady-state temperature distribution and indicate
the temperatures at x = 0, =L. Label the distribu-
tion as Case 2, and explain its key features.

(c) With the system operating as described in part (b), the
surface x = —L also experiences a sudden loss of
coolant. This dangerous situation goes undetected for
15 minutes, at which time the power to the heater is
deactivated. Assuming no heat losses from the sur-
faces of the plates, what is the eventual (t— ), uni-
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form, steady-state temperature distribution in the
plates? Show this distribution as Case 3 on your
sketch, and explain its key features. Hint: Apply the
conservation of energy requirement on a time-interval
basis, Eq. 1.1lb, for the initial and final conditions
corresponding to Case 2 and Case 3, respectively.

On T — t coordinates, sketch the temperature his-
tory at the plate locations x = 0, £L during the
transient period between the distributions for Cases
2 and 3. Where and when will the temperature in
the system achieve a maximum value?

Typically, air is heated in a hair dryer by blowing it
across a coiled wire through which an electric current is
passed. Thermal energy is generated by electric resis-
tance heating within the wire and is transferred by con-
vection from the surface of the wire to the air. Consider
conditions for which the wire is initially at room tem-
perature, T;, and resistance heating is concurrently initi-
ated with air flow at t = 0.

Coiled wire (r,, L, k, p, c,)

d
-—
-— -
- -
Air flow

@

(b)

(©

(d)

For a wire radius r,, an air temperature T, and a
convection coefficient h, write the form of the heat
equation and the boundary/initial conditions that
govern the transient thermal response, T(r, t), of
the wire.

If the length and radius of the wire are 500 mm and
1 mm, respectively, what is the volumetric rate of
thermal energy generation for a power consump-
tion of P, = 500 W? What is the convection heat
flux under steady-state conditions?

On T — r coordinates, sketch the temperature distri-
butions for the following conditions: initial condi-
tion (t = 0), steady-state condition (t — <0), and for
two intermediate times.

On @y —t coordinates, sketch the variation of the
heat flux with time for locationsatr = 0and r = r,,.
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3.1
The Plane Wall

Chapter 3 m One-Dimensional, Steady-State Conduction

In this chapter we treat situations for which heat is transferred by diffusion under
one-dimensional, steady-state conditions. The term “one-dimensional” refers to the
fact that only one coordinate is needed to describe the spatial variation of the
dependent variables. Hence, in a one-dimensional system, temperature gradients
exist along only a single coordinate direction, and heat transfer occurs exclusively
in that direction. The system is characterized by steady-state conditions if the tem-
perature at each point is independent of time. Despite their inherent simplicity, one-
dimensional, steady-state models may be used to accurately represent numerous
engineering systems.

We begin our consideration of one-dimensional, steady-state conduction by
discussing heat transfer with no internal generation of thermal energy (Sections 3.1
through 3.4). The objective is to determine expressions for the temperature dis-
tribution and heat transfer rate in common (planar, cylindrical, and spherical)
geometries. For such geometries, an additional objective is to introduce the con-
cept of thermal resistance and to show how thermal circuits may be used to
model heat flow, much as electrical circuits are used for current flow. The effect
of internal heat generation is treated in Section 3.5, and again our objective is to
obtain expressions for determining temperature distributions and heat transfer
rates. In Section 3.6, we consider the special case of one-dimensional, steady-
state conduction for extended surfaces. In their most common form, these sur-
faces are termed fins and are used to enhance heat transfer by convection to an
adjoining fluid. In addition to determining related temperature distributions and
heat rates, our objective is to introduce performance parameters that may be used
to determine their efficacy. Finally, in Section 3.7 we present concepts and equa-
tions relating to heat transfer within the human body, including the effects of
metabolic heat generation and perfusion.

For one-dimensional conduction in a plane wall, temperature is a function of the x
coordinate only and heat is transferred exclusively in this direction. In Figure 3.1a,
a plane wall separates two fluids of different temperatures. Heat transfer occurs by
convection from the hot fluid at T.. ; to one surface of the wall at T ;, by conduction
through the wall, and by convection from the other surface of the wall at T , to the
cold fluid at T., ,.

We begin by considering conditions within the wall. We first determine the
temperature distribution, from which we can then obtain the conduction heat trans-
fer rate.

3.1.1 Temperature Distribution

The temperature distribution in the wall can be determined by solving the heat
equation with the proper boundary conditions. For steady-state conditions with no
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FIGURE 3.1 Heat transfer through a plane wall. (a) Temperature distribution. (b) Equivalent

thermal circuit.

distributed source or sink of energy within the wall, the appropriate form of the heat
equation is Equation 2.21

d (9T _

ax (k dx> 0 3.1)

Hence, from Equation 2.2, it follows that, for one-dimensional, steady-state con-
duction in a plane wall with no heat generation, the heat flux is a constant, indepen-
dent of x. If the thermal conductivity of the wall material is assumed to be constant,
the equation may be integrated twice to obtain the general solution

T(X) = C,x + C, (3.2)

To obtain the constants of integration, C, and C,, boundary conditions must be
introduced. We choose to apply conditions of the first kind at x = 0 and x = L, in
which case
T(O) =Ts, and T(L) =Ts,
Applying the condition at x = 0 to the general solution, it follows that
T1=C,
Similarly, at x = L,
Tso=ClL+C,=CL+Ts,

in which case

Ts,2 - Ts,l _

L €
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Substituting into the general solution, the temperature distribution is then

TO) =(Too = Te) { + o (33)

From this result it is evident that, for one-dimensional, steady-state conduction in a
plane wall with no heat generation and constant thermal conductivity, the tempera-
ture varies linearly with x.

Now that we have the temperature distribution, we may use Fourier’s law,
Equation 2.1, to determine the conduction heat transfer rate. That is,

dT _ kA
Ox = _kA& = T (Ts,l - Ts,2) (3.4)

Note that A is the area of the wall normal to the direction of heat transfer and, for
the plane wall, it is a constant independent of x. The heat flux is then

" X k
d=t-Km,-T.) (35)

Equations 3.4 and 3.5 indicate that both the heat rate g, and heat flux gy are con-
stants, independent of x.

In the foregoing paragraphs we have used the standard approach to solving con-
duction problems. That is, the general solution for the temperature distribution is first
obtained by solving the appropriate form of the heat equation. The boundary condi-
tions are then applied to obtain the particular solution, which is used with Fourier’s
law to determine the heat transfer rate. Note that we have opted to prescribe surface
temperatures at x = 0 and x = L as boundary conditions, even though it is the fluid
temperatures, and not the surface temperatures, that are typically known. However, since
adjoining fluid and surface temperatures are easily related through a surface energy bal-
ance (see Section 1.3.2), it is a simple matter to express Equations 3.3 through 3.5 in
terms of fluid, rather than surface, temperatures. Alternatively, equivalent results
could be obtained directly by using the surface energy balances as boundary condi-
tions of the third kind in evaluating the constants of Equation 3.2 (see Problem 3.1).

3.1.2 Thermal Resistance

At this point we note that, for the special case of one-dimensional heat transfer with
no internal energy generation and with constant properties, a very important con-
cept is suggested by Equation 3.4. In particular, there exists an analogy between the
diffusion of heat and electrical charge. Just as an electrical resistance is associated
with the conduction of electricity, a thermal resistance may be associated with the
conduction of heat. Defining resistance as the ratio of a driving potential to the cor-
responding transfer rate, it follows from Equation 3.4 that the thermal resistance for
conduction in a plane wall is

T 1 T 2 L
Rt cond = : Ty > = KA (3.6)
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Similarly, for electrical conduction in the same system, Ohm’s law provides an
electrical resistance of the form

Es,l - Es,z _ L
| oA
The analogy between Equations 3.6 and 3.7 is obvious. A thermal resistance may

also be associated with heat transfer by convection at a surface. From Newton’s law
of cooling,

Re= (3.7)

q=hA(T, - T..) (3.8)

The thermal resistance for convection is then

Ry =12 1= = 1 3.9
t,conv — q m ()

Circuit representations provide a useful tool for both conceptualizing and
quantifying heat transfer problems. The equivalent thermal circuit for the plane
wall with convection surface conditions is shown in Figure 3.1b. The heat transfer
rate may be determined from separate consideration of each element in the net-
work. Since g, is constant throughout the network, it follows that

_ Tw,l - Ts,1 _ Ts,1 - Ts,z _ Ts,z - Too,z
%= "1h,A LKA Th,A

(3.10)

In terms of the overall temperature difference, T..; — T..,, and the total thermal
resistance, R, the heat transfer rate may also be expressed as
_ Too,]. - TOQYZ
" R
Because the conduction and convection resistances are in series and may be
summed, it follows that

(3.11)

1 L 1
=t =+
Ro=h AT kA T hA (3.12)
Radiation exchange between the surface and surroundings may also be impor-
tant if the convection heat transfer coefficient is small (as it often is for natural con-
vection in a gas). A thermal resistance for radiation may be defined by reference to
Equation 1.8:

R _ Ts_Tsur _ 1
trad Orad hrA

(3.13)

For radiation between a surface and large surroundings, h, is determined from
Equation 1.9. Surface radiation and convection resistances act in parallel, and if
T.. = Tq they may be combined to obtain a single, effective surface resistance.

3.1.3 The Composite Wall

Equivalent thermal circuits may also be used for more complex systems, such as
composite walls. Such walls may involve any number of series and parallel thermal
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FIGURE 3.2  Equivalent thermal circuit for a series composite wall.

resistances due to layers of different materials. Consider the series composite wall
of Figure 3.2. The one-dimensional heat transfer rate for this system may be ex-
pressed as

_Toa = Tes (3.14)
%= 3SR, '

where T..; —T.., is the overall temperature difference and the summation includes
all thermal resistances. Hence
_ T°°,1 - Tooy4
&= [(1/n;A) + (LalkaA) + (LelkgA) + (Le/kcA) + (1/h,A)]

(3.15)

Alternatively, the heat transfer rate can be related to the temperature difference and
resistance associated with each element. For example,
Too,l - Ts,l _ Ts,l - T2 T2 - T3

S= WA T kA (Lakeh) (3.16)

With composite systems it is often convenient to work with an overall
heat transfer coefficient, U, which is defined by an expression analogous to New-
ton’s law of cooling. Accordingly,

= UAAT (3.17)

where AT is the overall temperature difference. The overall heat transfer coefficient
is related to the total thermal resistance, and from Equations 3.14 and 3.17 we see
that UA = 1/R,,. Hence, for the composite wall of Figure 3.2,

1 _ 1
RigA  [(1/hy) + (Lalka) + (Le/ke) + (Lke) + (1hy)]

U= (3.18)
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FIGURE 3.3  Equivalent thermal circuits for a series—parallel composite wall.

In general, we may write

AT _ 1
Rt = ERt = q :m (3.19)

Composite walls may also be characterized by series—parallel configura-
tions, such as that shown in Figure 3.3. Although the heat flow is now multidi-
mensional, it is often reasonable to assume one-dimensional conditions. Subject
to this assumption, two different thermal circuits may be used. For case (a) it is
presumed that surfaces normal to the x direction are isothermal, while for case
(b) it is assumed that surfaces parallel to the x direction are adiabatic. Different
results are obtained for Ry, and the corresponding values of g bracket the actual
heat transfer rate. These differences increase with increasing |kr — kg|, as multi-
dimensional effects become more significant.

3.1.4 Contact Resistance

Although neglected until now, it is important to recognize that, in composite sys-
tems, the temperature drop across the interface between materials may be appreci-
able. This temperature change is attributed to what is known as the thermal contact
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FIGURE 3.4  Temperature drop due to thermal contact resistance.

resistance, R;.. The effect is shown in Figure 3.4, and for a unit area of the inter-
face, the resistance is defined as

L, Ta—T
Rt,c=% (3.20)

X

The existence of a finite contact resistance is due principally to surface rough-
ness effects. Contact spots are interspersed with gaps that are, in most instances,
air filled. Heat transfer is therefore due to conduction across the actual contact area
and to conduction and/or radiation across the gaps. The contact resistance may be
viewed as two parallel resistances: that due to the contact spots and that due to the
gaps. The contact area is typically small, and especially for rough surfaces, the
major contribution to the resistance is made by the gaps.

For solids whose thermal conductivities exceed that of the interfacial fluid, the
contact resistance may be reduced by increasing the area of the contact spots. Such
an increase may be effected by increasing the joint pressure and/or by reducing the
roughness of the mating surfaces. The contact resistance may also be reduced by se-
lecting an interfacial fluid of large thermal conductivity. In this respect, no fluid (an
evacuated interface) eliminates conduction across the gap, thereby increasing the

TABLE 3.1 Thermal contact resistance for (a) metallic interfaces
under vacuum conditions and (b) aluminum interface (10-pwm
surface roughness, 10° N/m?) with different interfacial fluids [1]

Thermal Resistance, R X 10* (m? - K/W)

(a) Vacuum Interface (b) Interfacial Fluid
Contact pressure 100 kN/m? 10,000 KN/m? Air 2.75
Stainless steel 6-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5-35 0.2-0.4 Silicone oil 0.525

Aluminum 1.5-5.0 0.2-0.4 Glycerine 0.265
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TABLE 3.2 Thermal resistance of representative solid/solid interfaces

Interface Ry, X 10* (m? - K/W) Source
Silicon chip/lapped aluminum in air 0.3-0.6 [2]
(27-500 kN/m?)

Aluminum/aluminum with indium foil ~0.07 [1, 3]
filler (~100 kN/m?)

Stainless/stainless with indium foil ~0.04 [1, 3]
filler (~3500 kN/m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1 [4]
coating

Aluminum/aluminum with Dow Corning ~0.07 [1, 3]
340 grease (~100 kN/m?)

Stainless/stainless with Dow Corning ~0.04 [1, 3]
340 grease (~3500 kN/m?)

Silicon chip/aluminum with 0.02-mm 0.2-0.9 [5]
epoxy

Brass/brass with 15-um tin solder 0.025-0.14 [6]

contact resistance. Likewise, if the characteristic gap width, L, becomes small (as,
for example, in the case of very smooth surfaces in contact), L/A g, can approach
values for which the thermal conductivity of the interfacial gas is reduced by mi-
croscale effects, as discussed in Section 2.2.

Although theories have been developed for predicting R{ , the most reliable re-
sults are those that have been obtained experimentally. The effect of loading on
metallic interfaces can be seen in Table 3.1a, which presents an approximate range
of thermal resistances under vacuum conditions. The effect of interfacial fluid on
the thermal resistance of an aluminum interface is shown in Table 3.1b.

Contrary to the results of Table 3.1, many applications involve contact be-
tween dissimilar solids and/or a wide range of possible interstitial (filler) materi-
als (Table 3.2). Any interstitial substance that fills the gap between contacting
surfaces and whose thermal conductivity exceeds that of air will decrease the
contact resistance. Two classes of materials that are well suited for this purpose
are soft metals and thermal greases. The metals, which include indium, lead, tin,
and silver, may be inserted as a thin foil or applied as a thin coating to one of the
parent materials. Silicon-based thermal greases are attractive on the basis of their
ability to completely fill the interstices with a material whose thermal conductiv-
ity is as much as 50 times that of air.

Unlike the foregoing interfaces, which are not permanent, many interfaces in-
volve permanently bonded joints. The joint could be formed from an epoxy, a soft
solder rich in lead, or a hard solder such as a gold/tin alloy. Due to interface resis-
tances between the parent and bonding materials, the actual thermal resistance of
the joint exceeds the theoretical value (L/k) computed from the thickness L and
thermal conductivity k of the joint material. The thermal resistance of epoxied and
soldered joints is also adversely affected by voids and cracks, which may form dur-
ing manufacture or as a result of thermal cycling during normal operation.

Comprehensive reviews of thermal contact resistance results and models are
provided by Snaith et al. [3], Madhusudana and Fletcher [7], and Yovanovich [8].
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ExampLE 3.1

In Example 1.6, we calculated the heat loss rate from a human body in air and water
environments. Now we consider the same conditions except that the surroundings
(air or water) are at 10°C. To reduce the heat loss rate, the person wears special
sporting gear (snow suit and wet suit) made from a nanostructured silica aerogel in-
sulation with an extremely low thermal conductivity of 0.014 W/m - K. The emis-
sivity of the outer surface of the snow and wet suits is 0.95. What thickness of aero-
gel insulation is needed to reduce the heat loss rate to 100 W (a typical metabolic
heat generation rate) in air and water? What are the resulting skin temperatures?

SOLUTION

I

Known: Inner surface temperature of a skin/fat layer of known thickness, ther-
mal conductivity, and surface area. Thermal conductivity and emissivity of snow
and wet suits. Ambient conditions.

Find: Insulation thickness needed to reduce heat loss rate to 100 W and corre-
sponding skin temperature.

Schematic:
o e=0.95
Ti=35%C T Ty, = 10°C
Skin/fat Insulation
Kins = 0.014 W/m-K
kg = 0.3 W/mK
T.=10°C
h = 2 W/m?2K (Air)
h = 200 W/m?K (Water)
<7Lsf: 3 mm —>— Lms"‘ T T T
Air or
water
Assumpl,ions:

1. Steady-state conditions.

2. One-dimensional heat transfer by conduction through the skin/fat and insula-
tion layers.

3. Contact resistance is negligible.
4. Thermal conductivities are uniform.

5. Radiation exchange between the skin surface and the surroundings is between a
small surface and a large enclosure at the air temperature.

6. Liquid water is opaque to thermal radiation.
7. Solar radiation is negligible.
8. Body is completely immersed in water in part 2.
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Analysis:  The thermal circuit can be constructed by recognizing that resistance
to heat flow is associated with conduction through the skin/fat and insulation layers
and convection and radiation at the outer surface. Accordingly, the circuit and the
resistances are of the following form (with h, = 0 for water):

The total thermal resistance needed to achieve the desired heat loss rate is found
from Equation 3.19,

T-T. (35-10)K

Ro= =g =" 100w

=0.25 K/IW

The total thermal resistance between the inside of the skin/fat layer and the cold sur-
roundings includes conduction resistances for the skin/fat and insulation layers and
an effective resistance associated with convection and radiation, which act in parallel.
Hence,

_ Lsf I—ins 1 1 71_ 1 Lsf I-ins 1
Rot =i ATk A T\Tna T Tna) “A\k, Tk Then,

This equation can be solved for the insulation thickness.

Air
The radiation heat transfer coefficient is approximated as having the same value as
in Example 1.6: h, = 5.9 W/m? - K.

L 1
Lins = I(ins|:ARtot - FS: “h+n :|
s r
3% 10~°m 1 ]

=0.014 W/m - K| 1.8 m? X 0.25 K/W — -
[ 0.3W/m-K (2 +5.9) W/m?-K

=0.0044 m = 4.4 mm <

Water

Le 1
Lins = I(ins|:ARtot - ﬁ - h]
S
3% 10°m 1 ]

— . 2 - -
= 0.014 W/m K[l-B m*x 0.25 KW= 53 Wim-K ~ 200 Wim? - K

=0.0061 m = 6.1 mm <

These required thicknesses of insulation material can easily be incorporated into the
snow and wet suits.
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The skin temperature can be calculated by considering conduction through the
skin/fat layer:

. ksf A(TI - Ts)
9= Lsf

or solving for T,

L -3
_ by geoe  100W X 3X107°m

= 34.4°C <
KA 0.3W/m - K X 1.8 m?

T,=T,
The skin temperature is the same in both cases because the heat loss rate and
skin/fat properties are the same.

Comments:

1. The nanostructured silica aerogel is an extremely porous material that is only
around 5% solid. Its thermal conductivity is less than the thermal conductivity
of the gas that fills its pores. As explained in Section 2.2, the reason for
this seemingly impossible result is that the pore size is only around 20 nm,
which reduces the mean free path of the gas and hence decreases its thermal
conductivity.

2. By reducing the heat loss rate to 100 W, a person could remain in the cold envi-
ronments indefinitely without becoming chilled. The skin temperature of
34.4°C would feel comfortable.

3. In the water case, the thermal resistance of the insulation dominates and all
other resistances can be neglected.

4. The convection heat transfer coefficient associated with the air depends on the
wind conditions, and can vary over a broad range. As it changes, so will the
outer surface temperature of the insulation layer. Since the radiation heat trans-
fer coefficient depends on this temperature, it will also vary. We can perform a
more complete analysis which takes this into account. The radiation heat trans-
fer coefficient is given by Equation 1.9:

hy = eo(Tso + T )(T s,o + Tgur (1)

Here T, is the outer surface temperature of the insulation layer, which can be
calculated from

q

_ 2
Lsf + I-ins ( )
ksz K insA

Ts,o =Ti—

Since this depends on the insulation thickness, we also need the previous equa-
tion for L.

— _ Lsf _ 1
I-ins - kins<ARtot kisf h+ hr) (3)

With all other values known, these three equations can be solved for the re-
quired insulation thickness. Using all the values from above, these equations
have been solved for values of h in the range 0 = h = 100 W/m? - K, and the
results are represented graphically.
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Increasing h reduces the corresponding convection resistance, which then re-
quires additional insulation to maintain the heat transfer rate at 100 W. Once
the heat transfer coefficient exceeds approximately 60 W/m? - K, the convec-
tion resistance is negligible and further increases in h have little effect on the
required insulation thickness.

The outer surface temperature and radiation heat transfer coefficient can
also be calculated. As h increases from 0 to 100 W/m? - K, T, decreases from
294 to 284 K, while h, decreases from 5.2 to 4.9 W/m? - K. The initial estimate
of h, = 5.9 W/m? - K was not highly accurate. Using this more complete model
of the radiation heat transfer, with h = 2 W/m? - K, the radiation heat transfer
coefficient is 5.1 W/m? - K and the required insulation thickness is 4.2 mm,
close to the value calculated in the first part of the problem.

5. This example is provided as a ready-to-solve model in IHT under Examples in
the menu bar. It could also be solved using the thermal resistance network
builder, Models/Resistance Networks. As an exercise, enter Equations 1 through
3 from Comment 4 into the IHT workspace and solve for the required insulation
thickness when the air convection heat transfer coefficient is 20 W/m? - K. Al
other conditions remain the same as in the problem statement. [Answer, 5.6 mm]

_

ExAmPLE 3.2

A thin silicon chip and an 8-mm-thick aluminum substrate are separated by a 0.02-mm-
thick epoxy joint. The chip and substrate are each 10 mm on a side, and their ex-
posed surfaces are cooled by air, which is at a temperature of 25°C and provides a
convection coefficient of 100 W/m? - K. If the chip dissipates 10* W/m? under nor-
mal conditions, will it operate below a maximum allowable temperature of 85°C?

SOLUTION
|

Known: Dimensions, heat dissipation, and maximum allowable temperature of a
silicon chip. Thickness of aluminum substrate and epoxy joint. Convection condi-
tions at exposed chip and substrate surfaces.
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Find: Whether maximum allowable temperature is exceeded.

Schematic:
ar
—
- T, = 25°C T
AIr = hZ 100 wim>K T
. Insulation %
Silicon chip a1 "
NS il ——————— [ ) A©—>QT;
B - P Ry,
Epoxy joint ’H < 3
©.02mm) ) a3 i f .
- L=8mm X
Aluminum ——— AN
substrate 1
h
— T,
T =25°C -
Air > h'= 100 Wm?K l
a3
Assumptions:

1. Steady-state conditions.

One-dimensional conduction (negligible heat transfer from sides of composite).
. Negligible chip thermal resistance (an isothermal chip).

. Constant properties.

. Negligible radiation exchange with surroundings.

g oA W N

Properties: Table A.1, pure aluminum (T ~ 350 K): k = 239 W/m - K.

Analysis: Heat dissipated in the chip is transferred to the air directly from the ex-
posed surface and indirectly through the joint and substrate. Performing an energy
balance on a control surface about the chip, it follows that, on the basis of a unit sur-
face area,
gc =0y + 02
or
" Tc B Tw Tc _Too

= +
© () Ry + (LK) + (1/h)

To conservatively estimate T, the maximum possible value of R{fc =09 x10*
m? - K/W is obtained from Table 3.2. Hence

-1
TC=Tw+q’C’[h+ ; 1 ]
Rl, + (LK) + (1/h)

or
T, = 25°C + 10* W/m?
-1
% [100 + 1 _ ] m? « KIW
(0.9+0.33 + 100) X 10°*
T, = 25°C + 50.3°C = 75.3°C <

Hence the chip will operate below its maximum allowable temperature.
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Comments:

1. The joint and substrate thermal resistances are much less than the convection
resistance. The joint resistance would have to increase to the unrealistically
large value of 50 X 10~* m?- K/W, before the maximum allowable chip tem-
perature would be exceeded.

2. The allowable power dissipation may be increased by increasing the convection
coefficients, either by increasing the air velocity and/or by replacing the air
with a more effective heat transfer fluid. Exploring this option for 100 = h =
2000 W/m? - K with T, = 85°C, the following results are obtained.

2.5

n
o

T,=85°C

—
o

—_
o

gy x 107% (W/m?)

o
o

0 500 1000 1500 2000
h (W/m?-K)

As h — =, g5 — 0 and virtually all of the chip power is transferred directly to
the fluid stream.

3. As calculated, the difference between the air temperature (T,, = 25°C) and the
chip temperature (T, = 75.3°C) is 50.3 K. Keep in mind that this is a tempera-
ture difference and therefore is the same as 50.3°C.

4. Consider conditions for which air flow over the chip (upper) or substrate
(lower) surface ceases due to a blockage in the air supply channel. If heat trans-
fer from either surface is negligible, what are the resulting chip temperatures
for q; = 10° W/m?? [Answer, 126°C or 125°C]

5. Consider using IHT to calculate the allowable power dissipation for the pre-
scribed air-flow conditions and T, = 85°C. Plot the results and compare them
with those shown graphically in Comment 2.

E—

EXAMPLE 3.3

The thermal conductivity of a D = 14-nm-diameter carbon nanotube is measured
with an instrument that is fabricated of a wafer of silicon nitride at a temperature of
T.. = 300 K. The 20-um-long nanotube rests on two 0.5-pum-thick, 10 um X 10 um
square islands that are separated by a distance s = 5 um. A thin layer of platinum is
used as an electrical resistor on the heated island (at temperature T,) to dissipate
g = 11.3 uW of electrical power. On the sensing island, a similar layer of platinum
is used to determine its temperature, T,. The platinum’s electrical resistance, R(T,) =
E/l, is found by measuring the voltage drop and electrical current across the plat-
inum layer. The temperature of the sensing island, T, is then determined from the
relationship of the platinum electrical resistance to its temperature. Each island is
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SOLUTION

Known:

suspended by two Ly, = 250-um-long silicon nitride beams that are wg, = 3 um
wide and t;, = 0.5 um thick. A platinum line of width w, = 1 um and thickness
t, = 0.2 um is deposited within each silicon nitride beam to power the heated island
or detect the voltage drop associated with the determination of T. The entire experi-
ment is performed in a vacuum with T,,, = 300 K and at steady state, T, = 308.4 K.
Estimate the thermal conductivity of the carbon nanotube.

Dimensions, heat dissipated at the heated island, and temperatures of
the sensing island and surrounding silicon nitride wafer.

Find: The thermal conductivity of the carbon nanotube.

1. Steady-state conditions.

Schematic:
L Ter =300 K
Carbon nanotube
D=14nm
Heated Sensing
island island
Sensing island T, =308.4 K
Heated
island / /
Th
A
S 0 uwm
— 10 1= 0.2 um
0= 250 Wy, =1pum
I I
t;,=0.5 um
T T
fe—— g, =3 um —>
Silicon nitride block
T.=300 K
Assumptions:

One-dimensional heat transfer.
The heated and sensing islands are isothermal.

a b~ N

Convection losses are negligible.

Radiation exchange between the surfaces and the surroundings is negligible.
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6. Ohmic heating in the platinum signal lines is negligible.
7. Constant properties.
8. Contact resistance between the nanotube and the islands is negligible.

Properties: Table A.1, platinum (325 K, assumed): k, = 71.6 W/m - K. Table A.2,
silicon nitride (325 K, assumed): kg, = 15.5 W/m - K.

Analysis: Energy that is dissipated at the heated island is transferred to the sili-
con nitride block through the support beams of the heated island, the carbon nano-
tube, and subsequently through the support beams of the sensing island. Therefore,
the thermal circuit may be constructed as follows

th/ 2 qul 2
T. T,
Rt,sup Rt,sup
> T,
q T ’\/é/\/ s
kancn
Rt.sup Rt.sup
T. T.
¢qh/ 2 ¢q5/ 2

where each supporting beam provides a thermal resistance, R, that is composed
of a resistance due to the silicon nitride (sn) in parallel with a resistance due to the
platinum (pt) line.

The cross-sectional areas of the materials in the support beams are

Ay = Wyt = (1 X 107°m) X (0.2 X 107°m) = 2 X 10 m?
Ag = Wil —Ay = (3 X107 m) X (0.5 X107°m) — 2 X 107 m? =1.3 X 1072 m?
while the cross-sectional area of the carbon nanotube is
A, = D4 = (14 X 10° m)?/4 = 1.54 X 107 1® m?
The thermal resistance of each support is

Rtsu _ thAPt+ ksnAsn -t
P Lpt Lsn

_ [71.6 W/m -K X2 X102 m?  155W/m -K X 1.3X 10" mz]‘l
250 X 10°°m 250 X 10°m

=7.25 X 10° K/W
The combined heat loss through both sensing island supports is
Gs = 2(Te—To)/Rysup = 2 X (308.4 K—300 K)/(7.25 X 10° K/W)
=232X107°W =232 uW
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It follows that
g,=9—0,=11.3 uW —2.32 uW = 8.98 uW

and T, attains a value of

-6 6
T.=T. +%tht,sup _ 300K 4 898X 10°°W >;7.25 X 10° KIW _ a0 6 ¢
For the portion of the thermal circuit connecting T, and T,
_ Th - Ts
%7 STk A

from which

. 232 X10 °W X5x10°m

AT =T 154 %107 m? x (332.6 K — 308.4 K)

ke, = 3113 W/m - K <

Commenis:

1. The measured thermal conductivity is extremely large, as evident by comparing
its value to the thermal conductivities of pure metals shown in Figure 2.4. Car-
bon nanotubes may be used to dope otherwise low thermal conductivity materi-
als to improve heat transfer.

2. Contact resistances between the carbon nanotube and the heated and sensing
islands were neglected because little is known about such resistances at the
nanoscale. However, if a contact resistance were included in the analysis, the
measured thermal conductivity of the carbon nanotube would be even higher
than the predicted value.

3. The significance of radiation heat transfer may be estimated by approximating
the heated island as a blackbody radiating to T, from both its top and bottom
surfaces. Hence, Qg = 5.67 X 1078 W/m? - K* X 2 X (10 X 107® m)? X
(332.6* — 3009)K* = 4.7 X 10"8 W = 0.047 uW, and radiation is negligible.

_

3.2

An Alternative Conduction Analysis

The conduction analysis of Section 3.1 was performed using the standard
approach. That is, the heat equation was solved to obtain the temperature distribu-
tion, Equation 3.3, and Fourier’s law was then applied to obtain the heat transfer
rate, Equation 3.4. However, an alternative approach may be used for the condi-
tions presently of interest. Considering conduction in the system of Figure 3.5, we
recognize that, for steady-state conditions with no heat generation and no heat loss
from the sides, the heat transfer rate g, must be a constant independent of x. That is,
for any differential element dx, g, = q,..4. This condition is, of course, a consequence
of the energy conservation requirement, and it must apply even if the area varies



3.2 m An Alternative Conduction Analysis 113

Insulation

FIGURE 3.5 System with a constant conduction heat transfer rate.

with position, A(x), and the thermal conductivity varies with temperature, k(T).
Moreover, even though the temperature distribution may be two dimensional, vary-
ing with x and y, it is often reasonable to neglect the y variation and to assume
a one-dimensional distribution in x.

For the above conditions it is possible to work exclusively with Fourier’s law
when performing a conduction analysis. In particular, since the conduction rate is
a constant, the rate equation may be integrated, even though neither the rate nor
the temperature distribution is known. Consider Fourier’s law, Equation 2.1,
which may be applied to the system of Figure 3.5. Although we may have no
knowledge of the value of g, or the form of T(x), we do know that g, is a constant.
Hence we may express Fourier’s law in the integral form

O A“) f K(T) dT (3.21)

The cross-sectional area may be a known function of x, and the material thermal
conductivity may vary with temperature in a known manner. If the integration is
performed from a point X, at which the temperature T, is known, the resulting
equation provides the functional form of T(x). Moreover, if the temperature T = T,
at some x = x, is also known, integration between x, and x; provides an expres-
sion from which g, may be computed. Note that, if the area A is uniform and k is
independent of temperature, Equation 3.21 reduces to

Ox AX
A

— —KAT (3.22)

where AX = x; — Xpand AT =T, — T,.

We frequently elect to solve diffusion problems by working with integrated
forms of the diffusion rate equations. However, the limiting conditions for which this
may be done should be firmly fixed in our minds: steady-state and one-dimensional
transfer with no heat generation.

ExXAMPLE 3.4

The diagram shows a conical section fabricated from pyroceram. It is of circular
cross section with the diameter D = ax, where a = 0.25. The small end is at
X; = 50 mm and the large end at x, = 250 mm. The end temperatures are T, = 400
Kand T, = 600 K, while the lateral surface is well insulated.
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X, X

1. Derive an expression for the temperature distribution T(x) in symbolic form,
assuming one-dimensional conditions. Sketch the temperature distribution.

2. Calculate the heat rate g, through the cone.

SOLUTION

Known: Conduction in a circular conical section having a diameter D = ax,
where a = 0.25.

Find:
1. Temperature distribution T(x).
2. Heat transfer rate q,.

Schematic:

Pyroceram X

Assumptions:
1. Steady-state conditions.
2. One-dimensional conduction in the x direction.
3. No internal heat generation.
4. Constant properties.

Properties: Table A.2, pyroceram (500 K): k = 3.46 W/m - K.

Analysis:

1. Since heat conduction occurs under steady-state, one-dimensional conditions
with no internal heat generation, the heat transfer rate q, is a constant indepen-
dent of x. Accordingly, Fourier’s law, Equation 2.1, may be used to determine
the temperature distribution

dT

Ox = _kAd7
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where A = 7D%4 = 7a®x%4. Separating variables,

4q, dx

TR kT
Ta‘x

Integrating from x, to any x within the cone, and recalling that g, and k are con-

stants, it follows that

4 X T
q;f & | ar
ma” Jx X T,

Hence

ma®

40y
d (—)1(+X11) — KT —T)

or solving for T

_ 49, (1 1
T =T, _7T6.2k (Xl a X)

Although q, is a constant, it is as yet an unknown. However, it may be determined
by evaluating the above expression at x = x,, where T(x,) = T,. Hence

- Ao (1 1
=T rrazk(Xl X;

and solving for g,
. 7Ta.2k(Tl - T2)
&= 41x) — (Ux,)]

Substituting for g, into the expression for T(x), the temperature distribution
becomes

(1/x) — (1/x 1)] -

T) =T, + (T, — Ty [(1/)(1)_(1/)(2)

From this result, temperature may be calculated as a function of x and the dis-
tribution is as shown.

T,

T(x)

Vv

X2 X1
X

Note that, since dT/dx = —4q,/kma®x? from Fourier’s law, it follows that the
temperature gradient and heat flux decrease with increasing x.

2. Substituting numerical values into the foregoing result for the heat transfer rate,
it follows that
_ (0.25)* X 3.46 W/m - K (400 — 600) K
x 4 (1/0.05m — 1/0.25 m)

—212W <
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Commenis: When the parameter a increases, the cross-sectional area changes
more rapidly with distance, causing the one-dimensional assumption to become less
appropriate.

3.3
Radial Systems

Cylindrical and spherical systems often experience temperature gradients in the
radial direction only and may therefore be treated as one dimensional. Moreover,
under steady-state conditions with no heat generation, such systems may be ana-
lyzed by using the standard method, which begins with the appropriate form of the
heat equation, or the alternative method, which begins with the appropriate form of
Fourier’s law. In this section, the cylindrical system is analyzed by means of the
standard method and the spherical system by means of the alternative method.

3.3.1 The Cylinder

A common example is the hollow cylinder, whose inner and outer surfaces are ex-
posed to fluids at different temperatures (Figure 3.6). For steady-state conditions
with no heat generation, the appropriate form of the heat equation, Equation 2.24, is

1d dT) _
14 ('“m) 0 (3.23)

where, for the moment, k is treated as a variable. The physical significance of this
result becomes evident if we also consider the appropriate form of Fourier’s law. The

Hot fluid
T hy

Cold fluid
T.5 /

N

0,1 3 Ts,2 Too,2
6 —> SAAMSANMAN AN~

T2 1 In(ry/ry) 1
hi2zrL 2 kL h,2 r,L

FIGURE 3.6 Hollow cylinder with convective surface conditions.
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rate at which energy is conducted across any cylindrical surface in the solid may be
expressed as

dT dT
g = —kA G = —k(2mrL) 3o (3.24)

where A = 27rL is the area normal to the direction of heat transfer. Since
Equation 3.23 dictates that the quantity kr(dT/dr) is independent of r, it follows
from Equation 3.24 that the conduction heat transfer rate g, (not the heat flux q;) is
a constant in the radial direction.

We may determine the temperature distribution in the cylinder by solving
Equation 3.23 and applying appropriate boundary conditions. Assuming the value
of k to be constant, Equation 3.23 may be integrated twice to obtain the general
solution

To obtain the constants of integration C, and C,, we introduce the following bound-
ary conditions:

T(r) =Ts1 and T(r) =Ts»

Applying these conditions to the general solution, we then obtain

TS,l = Cl In rl + Cz and TS,Z = Cl In r2 + Cz

Solving for C; and C, and substituting into the general solution, we then obtain

. Ts,l _ Ts,z r
T(r) = W In <r2 aF TS,Z (326)

Note that the temperature distribution associated with radial conduction through a
cylindrical wall is logarithmic, not linear, as it is for the plane wall under the same
conditions. The logarithmic distribution is sketched in the inset of Figure 3.6.

If the temperature distribution, Equation 3.26, is now used with Fourier’s law,
Equation 3.24, we obtain the following expression for the heat transfer rate:

_ 2’7TL k(TS,l - TS,Z)
R I CTA 520

From this result it is evident that, for radial conduction in a cylindrical wall, the
thermal resistance is of the form

In (ry/ry)
Rt,cond = 2Lk

(3.28)

This resistance is shown in the series circuit of Figure 3.6. Note that since the value
of g, is independent of r, the foregoing result could have been obtained by using the
alternative method, that is, by integrating Equation 3.24.
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T, hy

In(r/r)  In(ryfr,)  Inry/rs) 1

h2zrL  2nkl  2nkgl  2nkll  h2ar,L

FIGURE 3.7 Temperature distribution for a composite cylindrical wall.

Consider now the composite system of Figure 3.7. Recalling how we treated
the composite plane wall and neglecting the interfacial contact resistances, the heat
transfer rate may be expressed as

val - T:x:y4

1 In(ro/ry) In(ra/ry)  In(ryirs) 1
2mriLh, |« 2mkaL | 2mkel | 2mkcL | 2at,Lh,

q. = (3.29)

The foregoing result may also be expressed in terms of an overall heat transfer coef-
ficient. That is,

TOO - TOQ
6 =g = UA(T.a =T (330)

If U is defined in terms of the inside area, A; = 2#r,L, Equations 3.29 and 3.30 may
be equated to yield

1

rpb R, r
InF+ S+ tint+5 =
1 kg T2 ke P 4

U, = (3.31)

1. n
hy " K
This definition is arbitrary, and the overall coefficient may also be defined in terms
of A, or any of the intermediate areas. Note that

UA; = UA, = UA; = UA, = (SR) (3.32)
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and the specific forms of U,, U;, and U, may be inferred from Equations 3.29
and 3.30.

EXAMPLE 3.5

The possible existence of an optimum insulation thickness for radial systems is sug-
gested by the presence of competing effects associated with an increase in this
thickness. In particular, although the conduction resistance increases with the addi-
tion of insulation, the convection resistance decreases due to increasing outer sur-
face area. Hence there may exist an insulation thickness that minimizes heat loss by
maximizing the total resistance to heat transfer. Resolve this issue by considering
the following system.

1. A thin-walled copper tube of radius r; is used to transport a low-temperature
refrigerant and is at a temperature T; that is less than that of the ambient air at T.,
around the tube. Is there an optimum thickness associated with application of in-
sulation to the tube?

2. Confirm the above result by computing the total thermal resistance per unit
length of tube for a 10-mm-diameter tube having the following insulation thick-
nesses: 0, 2, 5, 10, 20, and 40 mm. The insulation is composed of cellular glass,
and the outer surface convection coefficient is 5 W/m? - K.

SOLUTION
|

Known: Radius r; and temperature T; of a thin-walled copper tube to be insulated
from the ambient air.

Find:

1. Whether there exists an optimum insulation thickness that minimizes the heat
transfer rate.

2. Thermal resistance associated with using cellular glass insulation of varying

thickness.
Schematic:
Em: 5 W/m2K
T
T. Air
Insﬁléhon, k
Assumptions:

1. Steady-state conditions.

One-dimensional heat transfer in the radial (cylindrical) direction.

Negligible tube wall thermal resistance.

Constant properties for insulation.

Negligible radiation exchange between insulation outer surface and surroundings.

o b~ wn
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Properties: Table A.3, cellular glass (285 K, assumed): k = 0.055 W/m - K.

Analysis:

1. The resistance to heat transfer between the refrigerant and the air is dominated
by conduction in the insulation and convection in the air. The thermal circuit is

therefore
T, T,
q«—— ANWA AN
In(r/ry) 1
2rk 2rrh

where the conduction and convection resistances per unit length follow from
Equations 3.28 and 3.9, respectively. The total thermal resistance per unit
length of tube is then

,_In(rir) N 1
ot ok 27rrh

where the rate of heat transfer per unit length of tube is
p_Te =T,
~ Ra
An optimum insulation thickness would be associated with the value of r that

minimized g’ or maximized Ry,. Such a value could be obtained from the re-
quirement that

dRygt
dr =0
Hence
1 1 ~0
2wkr  24r2h
or
_k
h

To determine whether the foregoing result maximizes or minimizes the total
resistance, the second derivative must be evaluated. Hence
dRie _ 1 . 1
2 2 3
dr 27kre  arr*h

or, atr = k/h,

AR 1 (1_1)2 1,
dr2  w(kh?\k 2k/  27k3h?
Since this result is always positive, it follows that r = k/h is the insulation
radius for which the total resistance is a minimum, not a maximum. Hence an
optimum insulation thickness does not exist.
From the above result it makes more sense to think in terms of a critical in-
sulation radius
_k
M= ﬁ
which maximizes heat transfer, that is, below which g’ increases with increas-
ing r and above which g decreases with increasing r.



3.3 m Radial Systems 121

2. With h = 5 W/m?- K and k = 0.055 W/m - K, the critical radius is

r = 0.055W/m - K
B W/m?-K

Hence r,, > r; and heat transfer will increase with the addition of insulation up
to a thickness of

=0.011m

re — = (0.011 — 0.005) m = 0.006 m

The thermal resistances corresponding to the prescribed insulation thicknesses
may be calculated and are plotted as follows:

8
R'tot
6
z | .
? 4 | Rcond
£ |
ot |
o |
R'CDI‘IV
2 |
|
|
|
|
0 1
0 6 10 20 30 40 50
r—r; (mm)

Comments:

1. The effect of the critical radius is revealed by the fact that, even for 20 mm of insu-
lation, the total resistance is not as large as the value for no insulation.

2. If r; <rg, as it is in this case, the total resistance decreases and the heat rate
therefore increases with the addition of insulation. This trend continues until
the outer radius of the insulation corresponds to the critical radius. The trend is
desirable for electrical current flow through a wire, since the addition of electri-
cal insulation would aid in transferring heat dissipated in the wire to the sur-
roundings. Conversely, if r; > r, any addition of insulation would increase the
total resistance and therefore decrease the heat loss. This behavior would be de-
sirable for steam flow through a pipe, where insulation is added to reduce heat
loss to the surroundings.

3. For radial systems, the problem of reducing the total resistance through the ap-
plication of insulation exists only for small diameter wires or tubes and for
small convection coefficients, such that r, > r;. For a typical insulation (k =
0.03 W/m - K) and free convection in air (h = 10 W/m?-K), r,, = (k/h) =
0.003 m. Such a small value tells us that, normally, r; > r, and we need not be
concerned with the effects of a critical radius.

4. The existence of a critical radius requires that the heat transfer area change in
the direction of transfer, as for radial conduction in a cylinder (or a sphere). In a
plane wall the area perpendicular to the direction of heat flow is constant and
there is no critical insulation thickness (the total resistance always increases
with increasing insulation thickness).

F
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LES! dr/,\ Conduction in a spherical shell.

3.3.2 The Sphere

Now consider applying the alternative method to analyzing conduction in the hol-
low sphere of Figure 3.8. For the differential control volume of the figure, energy
conservation requires that q, = q,.q for steady-state, one-dimensional conditions
with no heat generation. The appropriate form of Fourier’s law is
N L 2 dT
g, = —KkA dr k(4mr <) dr (3.33)

where A = 4712 is the area normal to the direction of heat transfer.

Acknowledging that g, is a constant, independent of r, Equation 3.33 may be
expressed in the integral form

&frzg:_f-rs,z
i T (3.34)

Assuming constant k, we then obtain

_ 4mk(Ts1 — Ts2)

% = W) — @Wr,) (3:39)

Remembering that the thermal resistance is defined as the temperature difference
divided by the heat transfer rate, we obtain

1 (1 1
Re cond = 7.3 (rl - r2> (3.36)

Note that the temperature distribution and Equations 3.35 and 3.36 could have been
obtained by using the standard approach, which begins with the appropriate form of
the heat equation.

Spherical composites may be treated in much the same way as composite walls
and cylinders, where appropriate forms of the total resistance and overall heat trans-
fer coefficient may be determined.

EXAMPLE 3.6

A spherical, thin-walled metallic container is used to store liquid nitrogen at
77 K. The container has a diameter of 0.5 m and is covered with an evacuated, re-
flective insulation composed of silica powder. The insulation is 25 mm thick, and its
outer surface is exposed to ambient air at 300 K. The convection coefficient is
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known to be 20 W/m?2 - K. The latent heat of vaporization and the density of liquid
nitrogen are 2 X 10° J/kg and 804 kg/m?®, respectively.

1. What is the rate of heat transfer to the liquid nitrogen?
2. What is the rate of liquid boil-off?

SOLUTION
|

Known: Liquid nitrogen is stored in a spherical container that is insulated and
exposed to ambient air.

Find:
1. The rate of heat transfer to the nitrogen.
2. The mass rate of nitrogen boil-off.

Schematic:
rhihgg Vent
Thin-walled spherical
container, r; =0.25 m
Air Insulation outer
surface,
l l l r,=0.275m
T.2=300K ) Liquid nitrogen
h =20 W/m*K T1=77K
'p =804 kg/m®
q heg = 2 x 10° Jikg
Assumptions:

1. Steady-state conditions.
2. One-dimensional transfer in the radial direction.

3. Negligible resistance to heat transfer through the container wall and from the
container to the nitrogen.

4. Constant properties.

5. Negligible radiation exchange between outer surface of insulation and
surroundings.

Properties: Table A.3, evacuated silica powder (300 K): k = 0.0017 W/m - K.

Analysis:
1. The thermal circuit involves a conduction and convection resistance in series
and is of the form

T T.o

Rt, cond Rt, conv
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where, from Equation 3.36,

R 1(1_1
veond = gk \f T2

1
h4mr3

and from Equation 3.9
Riconv =

The rate of heat transfer to the liquid nitrogen is then
_ Tw’z - Tooyl
(UAmK)[(1/r)) — (1/r))] + (/hdar3)

q

Hence,
g =[(300 — 77) K]

. 1 11
‘ [47r(0.0017 Wim - K) <o.25 m 0275 m>

N 1

(20 W/m? - K)47(0.275 m)z]
_ 223

9= 17.02+0.05

2. Performing an energy balance for a control surface about the nitrogen, it fol-
lows from Equation 1.12 that

W =13.06 W <

Ein =B =0

where Ein =gand Eout = mhfg is associated with the loss of latent energy due to
boiling. Hence

q - rhhfg = 0
and the boil-off m is
g
m=_—
i
— 130805 _ 5535 10 5kgls
2 % 10° J/kg

The loss per day is

m = 6.53 X 107°kg/s X 3600 s/h X 24 h/day

m = 5.64 kg/day <
or on a volumetric basis

n 5.64 kg/d
—Mm_ 79? = 0.007 m¥day = 7 liters/day
P 804 kg/m

Comments:

1. Since Ry o << Ry cone» the dominant contribution to the total thermal resistance
is that due to conduction in the insulation. Even if the convection coefficient
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were reduced by a factor of 10, thereby increasing the convection resistance by
the same amount, the effect on the boil-off would be small.

2. With a container volume of (4/3)(wr3) = 0.065 m*® = 65 liters, the daily loss
amounts to (7 liters/65 liters) 100% = 10.8% of capacity.

3. Using the foregoing model, the boil-off rate has been calculated as a function of
the insulation thickness, Ar = (r, — r;), where r; = 0.25m.

8

Boil-off rate (liter/day)
[e)}

~

2
25 30 35 40 45 50
Insulation thickness (mm)

As shown graphically, doubling the insulation thickness from 25 mm to 50 mm
reduces the boil-off rate by 45%.

4. The designer of the storage container has been asked to reduce the daily boil-off
rate from 7 to 4 liters/day. What is the required thickness of the silica powder
insulation? Another option is to use an evacuated foil-mat blanket for cryogenic
applications with a thermal conductivity of 0.00016 W/m - K and a thickness of
5mm. What is the corresponding daily boil-off rate? [Answers: 47.5 mm,
3.1 liter/day]

_

3.4
Summary of One-Dimensional
Conduction Results

Many important problems are characterized by one-dimensional, steady-state con-
duction in plane, cylindrical, or spherical walls without thermal energy generation.
Key results for these three geometries are summarized in Table 3.3, where AT refers
to the temperature difference, T,; — Tj,, between the inner and outer surfaces iden-
tified in Figures 3.1, 3.6, and 3.8. In each case, beginning with the heat equation,
you should be able to derive the corresponding expressions for the temperature dis-
tribution, heat flux, heat rate, and thermal resistance.
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TABLE 3.3 One-dimensional, steady-state solutions

to the heat equation with no generation

Plane Wall Cylindrical Wall? Spherical Wall?
: d’T 1d{ dT 1d dT
Heat equation @=0 "dr(rdr> =0 r2dr<r2dr> =0
In(r/r,) 1 —(ry/r)
Temperature A X T 4 AT 2 T AT [
distribution T —ATE 52 In (ry/r,) st 1—(ryr,)
4 AT kAT kAT
Heat flux (') kT in (6 m
AT 2mLK AT 47k AT
Heat rate (q) AT In (r,/r,) (Wry) — (1r)
Thermal L In (ry/ry) (/ry) — (Ury)
resistance (Rycong) KA 2Lk 4k

@The critical radius of insulation is r,, = k/h for the cylinder and r., = 2k/h for the sphere.

Conduction with Thermal Energy Generation

In the preceding section we considered conduction problems for which the tem-
perature distribution in a medium was determined solely by conditions at the
boundaries of the medium. We now want to consider the additional effect on the
temperature distribution of processes that may be occurring within the medium.
In particular, we wish to consider situations for which thermal energy is being
generated due to conversion from some other energy form.

A common thermal energy generation process involves the conversion from
electrical to thermal energy in a current-carrying medium (Ohmic, or resistance, or
Joule heating). The rate at which energy is generated by passing a current | through
a medium of electrical resistance R, is

E,=1°R, (3.37)
If this power generation (W) occurs uniformly throughout the medium of volume V,
the volumetric generation rate (W/m?) is then

E, IR,
g=-=— (3.38)

Energy generation may also occur as a result of the deceleration and absorption
of neutrons in the fuel element of a nuclear reactor or exothermic chemical reactions
occurring within a medium. Endothermic reactions would, of course, have the in-
verse effect (a thermal energy sink) of converting thermal energy to chemical bond-
ing energy. Finally, a conversion from electromagnetic to thermal energy may occur
due to the absorption of radiation within the medium. The process occurs, for exam-
ple, when gamma rays are absorbed in external nuclear reactor components (cladding,
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thermal shields, pressure vessels, etc.) or when visible radiation is absorbed in a
semitransparent medium. Remember not to confuse energy generation with energy
storage (Section 1.3.1).

3.53.1 The Plane Wall

Consider the plane wall of Figure 3.9a, in which there is uniform energy generation
per unit volume (g is constant) and the surfaces are maintained at Ty, and Tj,.
For constant thermal conductivity k, the appropriate form of the heat equation,
Equation 2.20, is

d’T , G _
el + K 0 (3.39)
The general solution is
T= —%xz +Cx+C, (3.40)

where C, and C, are the constants of integration. For the prescribed boundary
conditions,
T(-L) =T, and T(L) =T,

The constants may be evaluated and are of the form

1:% and C2=% 2 %
-L !_>X+L
|
T . T(x)
]!
Tt
- ESEEI 1

T..2h,
(a)

FIGURE 3.9  Conduction in a plane wall with uniform heat generation. (@) Asymmetrical
boundary conditions. (b) Symmetrical boundary conditions. (¢) Adiabatic surface at midplane.
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in which case the temperature distribution is

L2/ y2\ To—T T+ T
T(x) = aL (1—>+ “2 S “2 2 (3.41)

The heat flux at any point in the wall may, of course, be determined by using
Equation 3.41 with Fourier’s law. Note, however, that with generation the heat flux
is no longer independent of x.

The preceding result simplifies when both surfaces are maintained at a common
temperature, T,, = T,, = T,. The temperature distribution is then symmetrical
about the midplane, Figure 3.9b, and is given by

L2
Too = I <1—>+TS (3.42)
The maximum temperature exists at the midplane
gL?
TO)=To=5 +Ts (3.43)

in which case the temperature distribution, Equation 3.42, may be expressed as
T)—To _(x)
=) e

It is important to note that at the plane of symmetry in Figure 3.9b, the temper-
ature gradient is zero, (dT/dx),_, = 0. Accordingly, there is no heat transfer across
this plane, and it may be represented by the adiabatic surface shown in Figure 3.9c.
One implication of this result is that Equation 3.42 also applies to plane walls that
are perfectly insulated on one side (x = 0) and maintained at a fixed temperature T,
on the other side (x = L).

To use the foregoing results, the surface temperature(s) T, must be known.
However, a common situation is one for which it is the temperature of an adjoining
fluid, T..,, and not T,, which is known. It then becomes necessary to relate T, to T..
This relation may be developed by applying a surface energy balance. Consider the
surface at x = L for the symmetrical plane wall (Figure 3.9b) or the insulated plane

wall (Figure 3.9c). Neglecting radiation and substituting the appropriate rate equa-
tions, the energy balance given by Equation 1.12 reduces to

k4T
K dx x=L

Substituting from Equation 3.42 to obtain the temperature gradient at x = L, it fol-
lows that

=h(T,—T.) (3.45)

L
T—T+% (3.46)
Hence T, may be computed from knowledge of T.,, g, L, and h.

Equation 3.46 may also be obtained by applying an overall energy balance to
the plane wall of Figure 3.9b or 3.9c. For example, relative to a control surface
about the wall of Figure 3.9c, the rate at which energy is generated within the wall
must be balanced by the rate at which energy leaves via convection at the boundary.
Equation 1.11c reduces to

Eg = Eout (3.47)
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or, for a unit surface area,
gL =h(T,—T.) (3.48)

Solving for T, Equation 3.46 is obtained.

Equation 3.46 may be combined with Equation 3.42 to eliminate T, from the tem-
perature distribution, which is then expressed in terms of the known quantities g, L, k,
h, and T... The same result may be obtained directly by using Equation 3.45 as a bound-
ary condition to evaluate the constants of integration appearing in Equation 3.40.

EXAMPLE 3.7

A plane wall is a composite of two materials, A and B. The wall of material A has
uniform heat generation g = 1.5 X 10° W/m?, k, = 75 W/m - K, and thickness L, =
50 mm. The wall material B has no generation with kg = 150 W/m - K and thickness
Lg = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,. = 30°C and h = 1000 W/m? - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature T, of the insulated surface and the temperature T, of
the cooled surface.

SOLUTION
|

Known: Plane wall of material A with internal heat generation is insulated on
one side and bounded by a second wall of material B, which is without heat genera-
tion and is subjected to convection cooling.

Find:
1. Sketch of steady-state temperature distribution in the composite.
2. Inner and outer surface temperatures of the composite.

Schematic:
TO TZ
! : 1 1 T..=30°C
At | h = 1000 W/m*K
Insulation —- : q" : | T T T
g 1
G = 1.5 x 10° W/m3—- ! I
k, = 75 W/m-K 5 ] !
A d @ ! ! Water
1
A . — kg = 150 W/m-K
|:>LA =50 mm "}‘ﬁ" qB =0
o=
X 20 mm
Assumptions:

1. Steady-state conditions.
2. One-dimensional conduction in x-direction.
3. Negligible contact resistance between walls.
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4. Inner surface of A adiabatic.
5. Constant properties for materials A and B.

Analysis:
1. From the prescribed physical conditions, the temperature distribution in the

composite is known to have the following features, as shown:
(a) Parabolic in material A.

(b) Zero slope at insulated boundary.

(c) Linear in material B.

(d) Slope change = kg/k, = 2 at interface.

The temperature distribution in the water is characterized by
(e) Large gradients near the surface.

A Latls
X

. The outer surface temperature T, may be obtained by performing an energy bal-

ance on a control volume about material B. Since there is no generation in this
material, it follows that, for steady-state conditions and a unit surface area, the
heat flux into the material at x = L, must equal the heat flux from the material
due to convection at x = L, + Lg. Hence

q"=h(T, - T.) )

The heat flux q” may be determined by performing a second energy balance on
a control volume about material A. In particular, since the surface at x = 0 is
adiabatic, there is no inflow and the rate at which energy is generated must
equal the outflow. Accordingly, for a unit surface area,

”n

qla=gq 2)
Combining Equations 1 and 2, the outer surface temperature is
qL
T,=T.+-%
6 3
T2 — 300C + 15 X 10 W/m 2>< 005 m — 1050C <]
1000 W/m* - K
From Equation 3.43 the temperature at the insulated surface is
_ A
T= g+ T 3)

where T; may be obtained from the following thermal circuit:

T, T, T,

q"
R::Iond, B Rt':'onv
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That is,
Tl =T, + (R’c,ond,B + Rgonv) q”
where the resistances for a unit surface area are

n L n 1
Reond, B = r: Reonv = h

Hence,

T, =30°C + ( 0.02m L )

150 Wim - K 1000 W/m? - K
X 1.5 X 10 W/m® x 0.05 m
T, = 30°C + 85°C = 115°C
Substituting into Equation 3,

_— 1.5 X 10° W/m?® (0.05 m)?
o 2 X 75W/m - K

Ty = 25°C + 115°C = 140°C <

+ 115°C

Comments:

1. Material A, having heat generation, cannot be represented by a thermal circuit
element.

2. Since the resistance to heat transfer by convection is significantly larger than
that due to conduction in material B, R}, /Reng = 7.5, the surface-to-fluid
temperature difference is much larger than the temperature drop across material
B, (T, — T.)/(T, — T,) = 7.5. This result is consistent with the temperature
distribution plotted in part 1.

3. The surface and interface temperatures (T,, T;, and T,) depend on the genera-
tion rate g, the thermal conductivities k, and kg, and the convection coefficient
h. Each material will have a maximum allowable operating temperature, which
must not be exceeded if thermal failure of the system is to be avoided. We ex-
plore the effect of one of these parameters by computing and plotting tempera-
ture distributions for values of h = 200 and 1000 W/m? - K, which would be
representative of air and liquid cooling, respectively.
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For h = 200 W/m?- K, there is a significant increase in temperature throughout the
system and, depending on the selection of materials, thermal failure could be a prob-
lem. Note the slight discontinuity in the temperature gradient, dT/dx, at x = 50 mm.
What is the physical basis for this discontinuity? We have assumed negligible con-
tact resistance at this location. What would be the effect of such a resistance on the
temperature distribution throughout the system? Sketch a representative distribution.
What would be the effect on the temperature distribution of an increase in ¢, ka, or
ks? Qualitatively sketch the effect of such changes on the temperature distribution.

. This example is provided as two ready-to-solve models in IHT, which may be

accessed in Examples on the menu bar. The first approach uses the model
builder, Models/1-D, Steady-State Conduction, which solves for temperature
distributions and heat rates in plane walls, cylinders, and spheres. The second
approach demonstrates how to represent temperature distributions as User-
Defined Functions, which for this situation represents two piece-wise distribu-
tions in materials A (quadratic) and B (linear).

_

3.5.2 Radial Systems

Heat generation may occur in a variety of radial geometries. Consider the long,
solid cylinder of Figure 3.10, which could represent a current-carrying wire or a fuel

Cold fluid

T.h

0!

Ficure 3.10
Conduction in a solid cylinder with uniform heat
generation.
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element in a nuclear reactor. For steady-state conditions the rate at which heat is
generated within the cylinder must equal the rate at which heat is convected from
the surface of the cylinder to a moving fluid. This condition allows the surface
temperature to be maintained at a fixed value of T,.

To determine the temperature distribution in the cylinder, we begin with
the appropriate form of the heat equation. For constant thermal conductivity k,
Equation 2.24 reduces to

}d<rdT> +%=o (3.49)

Separating variables and assuming uniform generation, this expression may be
integrated to obtain

de

rge = "2+ G (3.50)

Repeating the procedure, the general solution for the temperature distribution
becomes

T(r) = —fk 24 C,Inr+C, (3.51)

To obtain the constants of integration C, and C,, we apply the boundary conditions

dT _ _
arl = 0 and T(ry) =T

The first condition results from the symmetry of the situation. That is, for the solid
cylinder the centerline is a line of symmetry for the temperature distribution and the
temperature gradient must be zero. Recall that similar conditions existed at the midplane
of a wall having symmetrical boundary conditions (Figure 3.9b). From the symmetry
condition at r = 0 and Equation 3.50, it is evident that C; = 0. Using the surface bound-
ary condition at r = r, with Equation 3.51, we then obtain

C,=T,+ 2 (3.52)

4k

The temperature distribution is therefore

T(r) = (1 - ) 4T, (3.53)

Evaluating Equation 3.53 at the centerline and dividing the result into Equation 3.53,
we obtain the temperature distribution in nondimensional form,

T(I') — T _ r 2

where T, is the centerline temperature. The heat rate at any radius in the cylinder
may, of course, be evaluated by using Equation 3.53 with Fourier’s law.
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To relate the surface temperature, T, to the temperature of the cold fluid, T,
either a surface energy balance or an overall energy balance may be used. Choosing
the second approach, we obtain

q(arr2L) = h(2ar, L)(T, — T..)
or
I3
T,=T.,+ 2h (3.55)
A convenient and systematic procedure for treating the different combinations
of surface conditions, which may be applied to one-dimensional planar and radial
(cylindrical and spherical) geometries with uniform thermal energy generation, is
provided in Appendix C. From the tabulated results of this appendix, it is a simple
matter to obtain distributions of the temperature, heat flux, and heat rate for bound-
ary conditions of the second kind (a uniform surface heat flux) and the third kind
(a surface heat flux that is proportional to a convection coefficient h or the overall
heat transfer coefficient U). You are encouraged to become familiar with the con-
tents of the appendix.

EXAMPLE 3.8

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m®) within the solid.

1. Obtain the general solution for the temperature distribution in the tube.

2. In a practical application a limit would be placed on the maximum tempera-
ture that is permissible at the insulated surface (r = r,). Specifying this limit
as Ts,, identify appropriate boundary conditions that could be used to deter-
mine the arbitrary constants appearing in the general solution. Determine these
constants and the corresponding form of the temperature distribution.

3. Determine the heat removal rate per unit length of tube.

4. If the coolant is available at a temperature T.,, obtain an expression for the con-
vection coefficient that would have to be maintained at the inner surface to
allow for operation at prescribed values of T, and q.

SOLUTION

Known: Solid tube with uniform heat generation is insulated at the outer
surface and cooled at the inner surface.

Find:
1. General solution for the temperature distribution T(r).

2. Appropriate boundary conditions and the corresponding form of the tempera-
ture distribution.

3. Heat removal rate for specified maximum temperature.
4. Corresponding required convection coefficient at the inner surface.
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